Rain-induced surface runoff and seasons lead to short- to medium-term anomalies in combined storm- and wastewater flows and temperatures, and influence treatment processes in wastewater resource recovery facilities (WRRF). Additionally, the implementation of decentralized heat recovery (HR) technologies for energy reuse in buildings affect energy-related processes across the urban water cycle and WRRFs heat inflows. However, quantitative insights on thermal-hydraulic dynamics in sewers at network scale and across different scales are very rare. To enhance the understanding of thermal-hydraulic dynamics and the water-energy nexus across the urban water cycle we present a modular framework that couples thermal-hydraulic processes: i) on the surface, ii) in the public sewer network, iii) in households (including in-building HR systems), and iv) in lateral connections. We validate the proposed framework using field measurements at full network scale, present modelling results of extended time periods to illustrate the effect of seasons and precipitation events simultaneously, and quantify the impact of decentralized HR devices on thermal-hydraulics. Simulation results suggest that the presented framework can predict temperature dynamics consistently all year long including short- to long-term variability of in-sewer temperature. The study provides quantitative evidence that the impact of household HR technologies on WRRF inflow heat budgets is reduced by approximately 20% during wet-weather periods in comparison to dry-weather conditions. The presented framework has potential to support multiple research initiatives that will improve the understanding of the water-energy nexus, pollutant dispersion and degradation, and support maintenance campaigns at network scale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2022.119492 | DOI Listing |
Purpose: To examine associations between clinical measures (self-reported and clinician-administered) and subsequent injury rates in the year after concussion return to play (RTP) among adolescent athletes.
Methods: We performed a prospective, longitudinal study of adolescents ages 13-18 years. Each participant was initially assessed within 21 days of concussion and again within 5 days of receiving RTP clearance from their physician.
Sci Rep
December 2024
College of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China.
The scattering of tiny particles in the atmosphere causes a haze effect on remote sensing images captured by satellites and similar devices, significantly disrupting subsequent image recognition and classification. A generative adversarial network named TRPC-GAN with texture recovery and physical constraints is proposed to mitigate this impact. This network not only effectively removes haze but also better preserves the texture information of the original remote sensing image, thereby enhancing the visual quality of the dehazed image.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou, 434100, Hubei, China.
Emotions play a crucial role in human thoughts, cognitive processes, and decision-making. EEG has become a widely utilized tool in emotion recognition due to its high temporal resolution, real-time monitoring capabilities, portability, and cost-effectiveness. In this paper, we propose a novel end-to-end emotion recognition method from EEG signals, called MSDCGTNet, which is based on the Multi-Scale Dynamic 1D CNN and the Gated Transformer.
View Article and Find Full Text PDFJ Neurol
December 2024
Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy.
Introduction: Non-motor symptoms (NMS) in Parkinson's disease (PD) can fluctuate daily, impacting patient quality of life. The Non-Motor Fluctuation Assessment (NoMoFA) Questionnaire, a recently validated tool, quantifies NMS fluctuations during ON- and OFF-medication states. Our study aimed to validate the Italian version of NoMoFA, comparing its results to the original validation and further exploring its clinimetric properties.
View Article and Find Full Text PDFChronic heart failure (CHF) represents one of the most severe and advanced stages of cardiovascular disease. Despite the critical importance of cardiac rehabilitation (CR) in CHF management, while studies have explored the effectiveness of various CR delivery modes and offered valuable context-specific insights, their relative efficacy remains inconsistent across different patient groups, healthcare environments, and intervention approaches. A clearer understanding requires comprehensive comparisons and in-depth analyses to address these variations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!