The Budyko-based elasticity method has been widely employed to clarify the driving factors behind runoff changes. However, different formulations of the Budyko framework could produce biases in the elasticity analysis and the assessment errors induced from different formulations of the Budyko framework in the elasticity method remain unclear. Here, we attempt to address this issue by validating the performance of elasticity methods derived from two analytical Budyko equations (Fu's equation and Choudhury's equation), as well as one empirical Budyko equation (Wang-Tang's equation) of the Budyko framework across 22 basins in China. Validations show that the runoff change simulated by the elasticity method derived from the empirical equation has lower errors compared with the two analytical Budyko equations. Results reveal that in the semi-humid environment, the alteration of basin characteristics takes the main responsibility for the runoff change. However, a clear divergence was found in simulated runoff changes among different Budyko-based elasticity methods in humid basins. For parts of the humid basin, the precipitation is the main driver of runoff change from the analytical Budyko-based elasticity methods, while the alteration of basin characteristics is the main derive of the runoff changes according to based on the empirical Budyko-based elasticity method. This difference could be attributed to the variations in the simulated contributions from the alteration of basin characteristics on runoff changes. Generally, our results highlight the importance of validating different Budyko equations when applying the elasticity method to investigate the driver of the runoff changes in humid regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.117070 | DOI Listing |
Nowadays, spaceborne LiDAR technology, particularly ICESat-2, has become a transformative tool in marine environmental research. Unlike traditional passive optical remote sensing methods, ICESat-2 offers detailed vertical structure mapping of oceanic optical properties. Despite the potential of ICESat-2 for observing the optical vertical structure, its application in the East China Sea with complex hydrological conditions and dynamic ecosystems remains limited.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, Yolo County, CA, 95616USA.
Juvenile Chinook Salmon (Oncorhynchus tshawytscha) populations have decreased substantially in the Sacramento-San Joaquin Delta (Delta) over the past decades, so considerably that two of the four genetically distinct runs are now listed in the Endangered Species Act. One factor responsible for this decline is the presence of contaminants in the Delta. Insecticides, used globally in agricultural, industrial, and household settings, have the potential to contaminate nearby aquatic systems through spray drift, runoff, and direct wastewater discharge.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
An integrated understanding of dissolved phosphorous (DP) export mechanism and controls on export over dry and wet periods is crucial for riverine ecological restorations in dammed river basins considering its high bioavailability and retention rates at dams. Riverine DP transport patterns (composition, sources, and transport pathways), export controls, and fate were investigated over the 2020 wet season (5 events) and dry seasons before and after it (2 events: dry and dry) in a semi-arid, small-dammed watershed to comprehend the links between terrestrial DP sources and aquatic DP sinks. Close spatiotemporal monitoring of the full range of phosphorous and total suspended solids (TSSs) and subsequent analyses (hysteresis, hierarchical partitioning, and coefficient of variation) provided the basis for the study.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China.
Soil nitrogen (N) transformations control N availability and plant production and pose environmental concerns when N is lost, raising issues such as soil acidification, water contamination, and climate change. Former studies suggested that soil N cycling is chiefly regulated by microbial activity; however, emerging evidence indicates that this regulation is disrupted by heavy metal (HM) contamination, which alters microbial communities and enzyme functions critical to N transformations. Environmental factors like soil organic carbon, soil texture, water content, temperature, soil pH, N fertilization, and redox status play significant roles in modulating the response of soil N cycling to HM contamination.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China. Electronic address:
Enhancing the understanding of the rainfall-runoff temporal dynamics in semi-arid and semi-humid regions is crucial for flood disaster mitigation. Loess Plateau is a unique environment within semi-arid and semi-humid regions, characterized by its deep loess soil, prevalent short-duration intense rainfall, and changes in underlying surface conditions. In this research, 25 catchments from the Loess Plateau were chosen to examine the temporal variations in event runoff responses across different time scales.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!