Nitrogen-rich materials such as poultry litter (PL) contributes to substantial N and C loss in the form of ammonia (NH) and carbon dioxide (CO) during composting. Biochar can act as a sorbent of ammonia (NH) and CO emission released during co-composting. Thus, co-composting poultry litter with rice husk biochar as a bulking agent is a good technique to mitigate NH volatilization and CO emission. A study was conducted to evaluate the effects of composting the mixtures of poultry litter with rice husk biochar at different ratios on NH and CO emissions. Four mixtures of poultry litter and rice husk biochar at different rate were composted at 0:1, 0.5:1, 1.3:1 and 2.3:1 ratio of rice husk biochar (RHB): poultry litter (PL) on a dry weight basis to achieve a suitable C/N ratio of 15, 20, 25, and 30, respectively. The results show that composting poultry litter with rice husk biochar can accelerate the breakdown of organic matter, thereby shortening the thermophilic phase compared to composting using poultry litter alone. There was a significant reduction in the cumulative NH emissions, which accounted for 78.38%, 94.60%, and 97.30%, for each C/N ratio of 20, 25, and 30. The total nitrogen (TN) retained relative was 75.96%, 85.61%, 90.24%, and 87.89% for each C/N ratio of 15, 20, 25, and 30 at the completion of composting. Total carbon dioxide lost was 5.64%, 6.62%, 8.91%, and 14.54%, for each C/N ratio of 15, 20, 21, and 30. In addition, the total carbon (TC) retained were 66.60%, 72.56%, 77.39%, and 85.29% for 15, 20, 25, and 30 C/N ratios and shows significant difference as compared with the initial reading of TC of the compost mixtures. In conclusion, mixing and composting rice husk biochar in poultry litter with C/N ratio of 25 helps in reducing the NH volatilization and CO emissions, while reducing the overall operational costs of waste disposal by shortening the composting time alongside nitrogen conservation and carbon sequestration. In formulating the compost mixture with rice husk biochar, the contribution of C and N from the biochar can be neglected in the determination of C/N ratio to predict the rate of mineralization in the compost because biochar has characteristic of being quite inert and recalcitrant in nature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.117051 | DOI Listing |
Poult Sci
December 2024
Department of Biosystems Engineering, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran. Electronic address:
Wet poultry litter creates an environment that accelerates the growth of bacteria and pathogens, leading to increased ammonia release. A practical way to reduce these adverse effects is heat treatment (drying). This work evaluated different methods for poultry litter drying and presented their principles, advantages, and disadvantages.
View Article and Find Full Text PDFHeliyon
December 2024
School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
In this study, modeling and optimization of Hydrothermal Carbonization (HTC) of Poultry litter were conducted to convert it into high-value materials. The aim was to understand the process and predict the effect of the influencing parameters on the product properties. The recovery of Inorganic Phosphorous (IP) and Carbon (C) was regarded as the model's response, although temperature and reaction time were thought to be important variables.
View Article and Find Full Text PDFPoult Sci
December 2024
Animal Nutritional Health Division, Jones-Hamilton Co., Walbridge, OH.
Broilers commonly experience stressors such as coccidiosis, a parasitic infection that results in intestinal damage, malabsorption, and performance losses. The poultry industry is exploring alternatives to anticoccidials for controlling coccidiosis, especially through the enhancement of gut health. Sodium bisulfate (NaHSO; SBS), an acid salt, has been used for many years as a litter acidifier to reduce aerial ammonia in poultry housing.
View Article and Find Full Text PDFJ Food Prot
December 2024
Food Science and Human Nutrition Department, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL 32611, United States. Electronic address:
Biological soil amendments of animal origin (BSAAO) are a source of foodborne pathogens that can contaminate fresh produce. This study evaluated the survival of E. coli over 140 d in agricultural soils amended with composted poultry litter (PL), heat-treated poultry pellets (HTPP), or unamended (UN) in Florida (FL) and Georgia (GA).
View Article and Find Full Text PDFCurr Microbiol
December 2024
Department of Veterinary and Animal Husbandry Extension Education, GADVASU, Ludhiana, Punjab, 141001, India.
A comparative cross-sectional study was conducted on farmed eggs (n: 480) and environmental samples (n: 72; feed, water, and poultry droppings) from twenty-four deep litter and caged poultry layer farms across Punjab, India. The study noted a significantly higher occurrence of Staphylococcus aureus (31.67%; 95% CI 26.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!