Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reducing antibiotic pollution in the environment in essential to preserve the effectiveness of the available antibiotics. In the present study, β-lactamase from Bacillus tropicus EMB20 was immobilized onto magnetic nanoparticles (FeO) through covalent coupling method. The nanoconjugate was structurally characterized using SEM, FTIR, UV-spectrometry, and XRD diffraction analyses. The prepared enzyme nanoconjugate was thereafter used for remediation of meropenem (Mer) and showed complete removal of 10 mgL Mer within 3 h of treatment. Moreover, the immobilized enzyme was successfully recovered and reused for up to 5 cycles with 57% removal efficiency. The immobilized preparation was also observed to be effective in the removal of higher Mer concentrations of 25 and 50 mgL with 79% and 75% removal efficiency, respectively. The major hydrolyzed product of Mer was found to be opened-lactam ring structure with m/z 402.16. The hydrolyzed product(s) were observed to be non-toxic as revealed through microbial MTT, confocal microscopy, and growth studies. Under the mixed conditions of 50 mgL ampicillin (Amp), 10 mgL amoxicillin (Amox) and, Mer, the nanoconjugate showed simultaneous complete removal of Amp and Mer, while 49% Amox removal was detected after 3 h of treatment. Moreover, the nanoconjugates also showed concomitant complete removal of antibiotic mixture with in 2 h from aquaculture wastewater. Overall, the study comes out with an efficient approach for remediation of β-lactam antibiotics from contaminated systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.117054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!