A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient remediation of meropenem using Bacillus tropicus EMB20 β-lactamase immobilized on magnetic nanoparticles. | LitMetric

Efficient remediation of meropenem using Bacillus tropicus EMB20 β-lactamase immobilized on magnetic nanoparticles.

J Environ Manage

Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, India. Electronic address:

Published: March 2023

Reducing antibiotic pollution in the environment in essential to preserve the effectiveness of the available antibiotics. In the present study, β-lactamase from Bacillus tropicus EMB20 was immobilized onto magnetic nanoparticles (FeO) through covalent coupling method. The nanoconjugate was structurally characterized using SEM, FTIR, UV-spectrometry, and XRD diffraction analyses. The prepared enzyme nanoconjugate was thereafter used for remediation of meropenem (Mer) and showed complete removal of 10 mgL Mer within 3 h of treatment. Moreover, the immobilized enzyme was successfully recovered and reused for up to 5 cycles with 57% removal efficiency. The immobilized preparation was also observed to be effective in the removal of higher Mer concentrations of 25 and 50 mgL with 79% and 75% removal efficiency, respectively. The major hydrolyzed product of Mer was found to be opened-lactam ring structure with m/z 402.16. The hydrolyzed product(s) were observed to be non-toxic as revealed through microbial MTT, confocal microscopy, and growth studies. Under the mixed conditions of 50 mgL ampicillin (Amp), 10 mgL amoxicillin (Amox) and, Mer, the nanoconjugate showed simultaneous complete removal of Amp and Mer, while 49% Amox removal was detected after 3 h of treatment. Moreover, the nanoconjugates also showed concomitant complete removal of antibiotic mixture with in 2 h from aquaculture wastewater. Overall, the study comes out with an efficient approach for remediation of β-lactam antibiotics from contaminated systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.117054DOI Listing

Publication Analysis

Top Keywords

complete removal
12
remediation meropenem
8
bacillus tropicus
8
tropicus emb20
8
immobilized magnetic
8
magnetic nanoparticles
8
3 h treatment
8
removal efficiency
8
removal
7
mer
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!