The micaceous black allotrope of ruthenium trichloride is the subject of many recent experimental and theoretical studies. Even so, its structural and magnetic properties remain undecided; monoclinic, trigonal and rhombohedral space groups for the crystal structure have been proposed on the basis of various types of experiments. The magnetic structure is often discussed in the context of the Kitaev state, but inevitably they are inconclusive discussions in the absence of structural and magnetic space groups. Johnsoninfer a candidate for the magnetic structure (C2/m) from results gathered in an extensive set of experiments on an untwined sample of-RuCl(Johnson2015B235119). The proposed zigzag antiferromagnetic ground state of Ru ions does not respond to bulk magnetic probes, with optical rotation and all forms of dichroism prohibited by symmetry. Experimental techniques exploited by Johnsonincluded x-ray and magnetic neutron diffraction. Properties of the candidate magnetic structure not previously explored include polar magnetism that supports Ru Dirac multipoles, e.g. a ruthenium anapole that is also known as a toroidal dipole. In a general case, Dirac dipoles are capable of generating interactions between magnetic ions, as in an electrical Dzyaloshinskii-Moryia interaction (Kaplan and Mahanti 2011B174432; Zhao2021341). Notably, the existence of Dirac quadrupoles in the pseudo-gap phases of cuprate superconductors YBCO and Hg1201 account for observed magnetic Bragg diffraction patterns. Dirac multipoles contribute to the diffraction of both x-rays and neutrons, and a stringent test of the magnetic structure C2/m awaits future experiments. From symmetry-informed calculations we show that, the magnetic candidate permits Bragg spots that arise solely from Dirac multipoles. Stringent tests of C2/m can also be accomplished by performing resonant x-ray diffraction with signal enhancement from the chlorine-edge. X-ray absorption spectra published for-RuClpossess a significant low-energy feature (Plumb2014B041112(R)). Many experimental studies of other Cl-metal compounds concluded that identical features hallmark the chemical bond. Using a monoclinic C2/m structure, we predict the contribution to Bragg diffraction at the Cl-edge absorption. Specifically, the variation of intensity of Bragg spots with rotation of the sample about the reflection vector. The two principal topics of our studies, polar magnetism and the chemical bond in the black allotrope of ruthenium trichloride, are brought together in a minimal model of magnetic Ru ions in C2/m.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/acae12 | DOI Listing |
Inorg Chem
January 2025
Department of Material and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
Zinc oxide (ZnO) is a semiconductor with a wide range of applications, and often the properties are modified by metal-ion doping. The distribution of dopant atoms within the ZnO crystal strongly affects the optical and magnetic properties, making it crucial to comprehend the structure down to the atomic level. Our study reveals the dopant structure and its contents in Eu-doped ZnO nanosponges with up to 20% Eu-O clusters.
View Article and Find Full Text PDFNeurol Sci
January 2025
International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
Objectives: Fibromyalgia imposes a considerable burden of disability worldwide, and its therapies include rehabilitation interventions. However, the overall brain modulatory effects of rehabilitation interventions and their effects on clinical improvements in patients with fibromyalgia remain unclear. This systematic review of magnetic resonance imaging studies synthesised evidence for the brain modulatory effects of rehabilitation in patients with fibromyalgia.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States.
Colloids can be used either as model systems for directed assembly or as the necessary building blocks for making functional materials. Previous work primarily focused on assembling colloids under a single external field, where controlling particle-particle interactions is limited. This work presents results under a combination of electric and magnetic fields.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
Auxetic materials hold tremendous potential for many advanced applications, but candidates are quite scarce, especially at two dimensions. Here, we focus on two-dimensional (2D) metal dichalcogenides and dihalides with the chemical formula MX2 by screening structures sharing the P4̄m2 space group among 330 MX2 compounds from the computational 2D materials database. Via high-throughput first-principles computations, 25 stable MX2 (M = Mg, Ca, Mn, Co, Ni, Cu, Zn, Ge, Cd, Sn; X = F, Cl, Br, I, O, S, Se) systems with in-plane negative Poisson's ratios (NPRs) are successfully identified.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
Additive manufacturing (AM) of magnetic materials has recently attracted increasing interest for various applications but is often limited by the high cost and supply chain risks of rare-earth-element (REE) magnetic precursors. Recent advances in nanomanufacturing have enabled the development of rare-earth-free (REF) magnetic materials, such as spinel ferrites, hexaferrites, MnAl, MnBi, Alnico, FePt, and iron oxides/nitrides, which offer promising alternatives for printing high-performance magnetic devices. This review provides a detailed overview of the latest developments in REF magnetic materials, covering both synthesis strategies of REF magnetic materials/nanomaterials and their integration into AM processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!