First Report of Binucleate AG-G Causing Root Rot of Japanese Bay Tree () in Korea.

Plant Dis

Chonnam National University, 34931, Department of Integrative Food, Bioscience and Biotechnology, 77, Yongbong-ro, Buk-gu, Gwangju, Korea (the Republic of), 61186;

Published: December 2022

Sieb. & Zucc., commonly known as Japanese bay tree, is a large evergreen tree belonging to the Lauraceae family and is widely distributed in Asia, including Korea in subtropical and tropical forest areas (Wu et al., 2006). In April 2021, a root rot disease of 2-year-old Japanese bay trees was observed in a nursery on Wando Island in Korea. Tree roots exhibited brown to black discoloration, root rot, and deterioration, and leaves were severely wilted followed by plant death, with a disease incidence of approximately 30%. Symptomatic roots were surface sterilized with 1% NaOCl for 5 min and washed three times with distilled water. The root tissues were dried and plated on potato dextrose agar (PDA) and vegetable juice agar (V8) media. After 3-4 days of incubation at 25 ˚C, brown fungal-like colonies grew on both culture media. Hyphae of two representative isolates (CMML21-35 and CMML21-36) exhibited typical characteristics of , including a constriction of branching hyphae (Alvarez et al., 2013). In addition, two nuclei in each mycelial cell were observed after staining of mycelia with 0.1% Safranin O. The two isolates were identified as binucleate based on the microscopic observation. To confirm identification of the isolates, the internal transcribed spacer (ITS) and large subunit (LSU) regions were sequenced using two primer sets, ITS1/ITS4 and LROR/LR5 (White et al., 1990; Vilgalys and Hester 1990). BLASTn search analysis revealed that the ITS sequence of isolates had 99.66% (582 base pair matched of 584) sequence similarity with the sequences of binucleate (accession numbers JF519837 and AY927327, respectively) and the LSU sequence matched well with the sequence of sp. AG-G (accession number MN977413; similarity 99.56% and 910 base pair matched of 914). The sequences were deposited in GenBank under accession numbers OM049427 and OM049428 for ITS, OM679289 and OM679290 for LSU. Phylogenetic analysis of ITS and LSU regions revealed that the isolates grouped with binucleate anastomosis group AG-G (Teleomorph: sp.) with a high bootstrap value. Accordingly, the morphological and molecular characteristics confirmed the causal pathogen as binucleate AG-G (Jiang et al., 2016; Gonzalez et al. 2016). To test pathogenicity, a 2-year-old Japanese bay tree was inoculated by creating a hole in the soil near the root rhizosphere and placing 1.5g of ground mycelia obtained from a 5 day-old broth culture at two time points one week apart (Bartz et al., 2010). The control pot was inoculated with sterilized ddHO. Inoculated and control plant pots were incubated in plastic boxes with 100% relative humidity at 25 ℃ for five days. After that, the pots were placed in the greenhouse at 23-25 ℃. One month post inoculation, initial disease symptoms were observed, and after two months, severe foliar wilting and eventual plant death occurred. The non-inoculated control remained healthy. The pathogen was re-isolated from infected roots, fulfilling Koch's postulates. The experiment was conducted three times with three replications. This is the first report of root rot of Japanese bay tree caused by binucleate AG-G in Korea and in the world. Previously, a pathogenic binucleate AG-G was isolated from colonized apple tree roots in orchards in Italy (Kelderer et al., 2012). The present study implies that this pathogen potentially causes a negative impact on the nursery and forest industries, thus further research on the screening for pathogenicity in other tropical and subtropical trees and also apple, which is an important crop in Korea, is needed.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-04-22-0982-PDNDOI Listing

Publication Analysis

Top Keywords

japanese bay
20
binucleate ag-g
16
root rot
16
bay tree
16
rot japanese
8
2-year-old japanese
8
tree roots
8
plant death
8
three times
8
lsu regions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!