Relationship between Pesticide Standards for Classification of Water Bodies and Ecotoxicity: A Case Study of the Brazilian Directive.

Toxics

Brazilian Agricultural ReseArch. Corporation-Embrapa Cerrados, Federal District, Planaltina 73310-970, Brazil.

Published: December 2022

The objective of this study was to evaluate if the maximum values (MVs) for pesticides in surface freshwater included in CONAMA directive 357/2005 are safe for aquatic biota, comparing them with ecotoxicology data published in the literature. The terms "aquatic toxicity", "chronic" "acute", "LC", "EC", "NOEL", "NOEC" and the name of each pesticide were used for searches on the research platforms. Data from 534 tests reported in 37 published articles and three ecotoxicological databases were included in this study; 24% of the tests were carried out with producer organisms, 34% with primary consumers and 42% with secondary consumers. Microcrustaceans of the genus and the fishes and were the organisms most used. Atrazine, alachlor and metolachlor were the most investigated pesticides. Atrazine and alachlor are approved in Brazil, with atrazine ranking fourth among the most used pesticides in the country. The results indicated that of the 27 pesticides included in the standard directive, 17 have a risk quotient (RQ) higher than the level of concern for at least one ecotoxicological parameter and may not protect the aquatic biota. The insecticide malathion, used in various agricultural crops in Brazil, was the one that presented the highest RQs (3125 and 3,125,000 for freshwaters classified as 1/2 and 3, respectively), related to a LC (96 h) of 0.000032 µg/L in . The results indicate that CONAMA directive 357/2005 should be updated in line with the current use of pesticides in the country, and the MVs should be re-evaluated so that they do not represent toxicity for the aquatic biota.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783844PMC
http://dx.doi.org/10.3390/toxics10120767DOI Listing

Publication Analysis

Top Keywords

aquatic biota
12
conama directive
8
directive 357/2005
8
atrazine alachlor
8
pesticides country
8
pesticides
5
relationship pesticide
4
pesticide standards
4
standards classification
4
classification water
4

Similar Publications

Persistent pollutant exposure impacts metabolomic profiles in polar bears and ringed seals from the High Arctic and Hudson Bay, Canada.

Environ Res

January 2025

Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada. Electronic address:

Metabolomics measures low molecular weight endogenous metabolites and changes linked to contaminant exposure in biota. Few studies have explored the relationship between metabolomics and contaminants in Arctic wildlife. We analyzed 239 endogenous metabolites and ∼150 persistent organic pollutants (POPs), including total mercury (THg), in the liver of polar bears and their ringed seal prey harvested from low Canadian Arctic (western Hudson Bay; WHB) and high Arctic (HA) locations during 2015-2016.

View Article and Find Full Text PDF

Changes in population fitness and gene co-expression networks reveal the boosted impact of toxic cyanobacteria on Daphnia magna through microplastic exposure.

J Hazard Mater

January 2025

Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China. Electronic address:

The concomitant prevalence of toxic cyanobacteria blooms and plastic pollution in aquatic ecosystems is emerging as a pressing global water pollution dilemma. While toxic cyanobacteria and microplastics (MPs) can each independently exert significant impacts on aquatic biota, the magnitude and trajectory of the combined interactions remains rudimentary. In this study, we evaluated how MPs influences cyanobacterial stress on keystone grazer Daphnia, focusing on population, individual, biochemical and toxicogenomic signatures.

View Article and Find Full Text PDF

Composition and functional diversity of soil and water microbial communities in the rice-crab symbiosis system.

PLoS One

January 2025

Department of Earth and Environmental Sciences, California State University, Fresno, CA, United States of America.

Rice-crab co-culture is an environmentally friendly agricultural and aquaculture technology with high economic and ecological value. In order to clarify the structure and function of soil and water microbial communities in the rice-crab symbiosis system, the standard rice-crab field with a ring groove was used as the research object. High-throughput sequencing was performed with rice field water samples to analyze the species and abundance differences of soil bacteria and fungi.

View Article and Find Full Text PDF

The semiconductor copper tungstate (CuWO) may end up in aquatic ecosystems since it has the potential for water decontamination. The toxic effects of CuWO are totally unknown for eukaryotic organisms. In view of this, we aimed to evaluate the toxicity of CuWO particles (size of 161.

View Article and Find Full Text PDF

Fungi play a crucial role in aquatic leaf litter decomposition. Aquatic fungi have long been thought to spend the majority of their lives in the water. Here, we explore the possibility of an amphibious life cycle, where phyllosphere fungi spend part of their life cycle in aquatic systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!