Nitrate removal rates, isotopic fractionation, and denitrifying bacteria in a woodchip-based permeable reactive barrier system: a long-term column experiment.

Environ Sci Pollut Res Int

Department of Earth and Environmental Sciences & The Earth and Environmental Science System Research Center, Jeonbuk National University, Jeonju-Si, Jeollabuk-Do, 54896, Republic of Korea.

Published: March 2023

This study evaluated the effectiveness of using organic carbon materials (i.e., woodchips) to remove nitrate from groundwater. The results of our flow-through column experiment, which was conducted over 1.6 years, suggested that denitrifying bacteria reduce nitrate by using it as an electron acceptor and woodchips as an electron donor. The nitrate removal rates were sufficiently high (0.39-1.04 mmol L day) during the operation of the column. Denitrification process was supported by fractionation of nitrogen and oxygen isotopes (δN and δO), with the δN and δO values enriched from 7.4‰ and 22.3‰ to 21.2‰ and 30.4‰, respectively. Enrichment factors ([Formula: see text]) for  N and O were calculated using the Rayleigh fractionation model, with values of - 13.2‰ for εN and - 7.1‰ for εO. The fractionation ratio of  N to O was 1.9:1, confirming denitrification. The most abundant bacterial genera in the soil used for inoculation were Enterobacter (86.7%), Nitrospira (1.8%), and Arthrobacter (1.5%), while those in the column effluent were Macrococcus (37.1%), Escherichia (14.7%), and Shigella (14.6%), indicating that bacterial communities changed in response to geochemical conditions in the column. This study suggests that nitrate in groundwater can be effectively removed using woodchip-based passive treatment systems and that information on isotopic fractionation and denitrifying bacteria can be key tools to understand denitrification.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-24826-4DOI Listing

Publication Analysis

Top Keywords

denitrifying bacteria
12
nitrate removal
8
removal rates
8
isotopic fractionation
8
fractionation denitrifying
8
column experiment
8
nitrate groundwater
8
δn δo
8
nitrate
5
fractionation
5

Similar Publications

Organic carbon can influence nitrogen removal during the anaerobic ammonia oxidation (anammox) process. Propionate, a common organic compound in pretreated wastewater, its impacts on mixotrophic anammox bacteria and the underlying mechanisms have not been fully elucidated. This study investigated the core metabolism and shift in behavior patterns of mixotrophic Candidatus Brocadia sapporoensis (AMXB) under long-term propionate exposure.

View Article and Find Full Text PDF

Dissimilatory nitrate reduction pathways drive high nitrous oxide emissions and nitrogen retention under the flash drought in the largest freshwater lake in China.

Water Res

December 2024

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China. Electronic address:

Flash drought (FD) events induced by climate change may disrupt the normal hydrological regimes of floodplain lakes and affect the plant-microbe mediated dissimilatory nitrate reduction (DNR), i.e., denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA), thus having important consequences for nitrous oxide (NO) emissions and nitrogen (N) retention.

View Article and Find Full Text PDF

Elevated concentrations of pharmaceutically active compounds (PhACs) in the water bodies are posing a serious threat to the aquatic microbiota and other organisms. In this context, anaerobic ammonium oxidizing (anammox) bacteria carry a great potential to degrade PhACs through their innate metabolic pathways. This study investigates the influence of short-term exposure to lower and higher concentrations (0.

View Article and Find Full Text PDF

Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR).

View Article and Find Full Text PDF

Transformation fate of bisphenol A in aerobic denitrifying cultures and its coercive mechanism on the nitrogen transformation pathway.

Environ Res

January 2025

State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong Kowloon, 999077, China. Electronic address:

Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!