With its robust ability to integrate and learn from large sets of clinical data, artificial intelligence (AI) can now play a role in diagnosis, clinical decision making, and personalized medicine. It is probably the natural progression of traditional statistical techniques. Currently, there are many unmet needs in nephrology and, more particularly, in the kidney transplantation (KT) field. The complexity and increase in the amount of data, and the multitude of nephrology registries worldwide have enabled the explosive use of AI within the field. Nephrologists in many countries are already at the center of experiments and advances in this cutting-edge technology and our aim is to generalize the use of AI among nephrologists worldwide. In this paper, we provide an overview of AI from a medical perspective. We cover the core concepts of AI relevant to the practicing nephrologist in a consistent and simple way to help them get started, and we discuss the technical challenges. Finally, we focus on the KT field: the unmet needs and the potential role that AI can play to fill these gaps, then we summarize the published KT-related studies, including predictive factors used in each study, which will allow researchers to quickly focus on the most relevant issues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9773693PMC
http://dx.doi.org/10.1007/s40620-022-01529-0DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
nephrology kidney
8
kidney transplantation
8
generalizing artificial
4
intelligence nephrology
4
transplantation robust
4
robust ability
4
ability integrate
4
integrate learn
4
learn large
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!