Farnesol is an isoprenoid intermediate in the mevalonate (MVA) pathway and is produced by the dephosphorylation of farnesyl diphosphate. Farnesol plays a central role in cell growth and differentiation, controls production of ubiquinone and ergosterol, and participates in the regulation of filamentation and biofilm formation. Despite these important functions, studies of farnesol in filamentous fungi are limited, and information on its effects on antifungal and/or biocontrol activity is scarce. In the present article, we identified the gene , encoding a diacylglycerol pyrophosphatase that catalyzes production of farnesol from farnesol diphosphate. We analyzed the function of to address the importance of farnesol in physiology and ecology. Overexpression of in caused an expected increase in farnesol production as well as a marked change in squalene and ergosterol levels, but overexpression did not affect antifungal activity. In interaction with plants, a -overexpressing transformant acted as a sensitizing agent in that it up-regulated expression of plant defense salicylate-related genes in the presence of a fungal plant pathogen. In addition, toxicity of farnesol on and plants was examined. Finally, a phylogenetic study of was performed to understand its evolutionary history as a primary metabolite gene. This article represents a step forward in the acquisition of knowledge on the role of farnesol in fungal physiology and in fungus-environment interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783820 | PMC |
http://dx.doi.org/10.3390/jof8121266 | DOI Listing |
J Biol Chem
January 2025
Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, Korea. Electronic address:
FXR, encoded by Nh1r4, is a nuclear receptor crucial in regulating bile acid, lipid, and glucose metabolism. Prior research has indicated that activating FXR in the liver and small intestine may offer protection against obesity and metabolic diseases. This study demonstrates the essential role of the FXR-ApoC2 pathway in promoting the browning of white adipose tissue (WAT).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China.
Inhibitors of the PD-1/PD-L1 immune checkpoint have revolutionized cancer treatment. However, the clinical response remains limited, with only 20% of patients benefiting from treatment and approximately 60% of PD-L1-positive patients exhibiting resistance. One key factor contributing to resistance is the externalization of phosphatidylserine (PS) on the surface of cancer cells, which suppresses immune responses and promotes PD-L1 expression, further hindering the efficacy of PD-L1 blockade therapies.
View Article and Find Full Text PDFEXCLI J
November 2024
Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.
Farnesol (FAR) is a sesquiterpene alcohol that exists in many fruits and vegetables and possesses promising anti-inflammatory and antioxidant activities. Cadmium (Cd) is an environmental pollutant known for its serious health effects. Liver injury associated with oxidative stress is a hazardous consequence of exposure to Cd.
View Article and Find Full Text PDFLinear aliphatic oligoesters derived from ε-caprolactone (CL) were synthesized by ring-opening polymerization (ROP) using terpene alcohols that have antibacterial activity as initiators (nerol, geraniol, β-citronellol and farnesol). Ammonium decamolybdate (NH)[MoO] was used as a catalyst. From previous oligoesters, monodisperse species of monomers, dimers, and trimers were isolated by flash column chromatography (FCC).
View Article and Find Full Text PDFInflammopharmacology
December 2024
Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
Juice and decoction of leaves of Suaeda fruticosa, a halophytic medicinal plant of Cholistan desert, is traditionally used to treat rheumatism. The current study was carried out to probe into in vivo anti-nociceptive, anti-inflammatory, and anti-arthritic potential of ethanolic extract of the whole plant of S. fruticosa (Et-SF) and its bioactive molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!