Polyester-based scaffolds are of research interest for the regeneration of a wide spectrum of tissues. However, there is a need to improve scaffold wettability and introduce bioactivity. Surface modification is a widely studied approach for improving scaffold performance and maintaining appropriate bulk properties. In this study, three methods to functionalize the surface of the poly(lactide-co-ε-caprolactone) PLCL fibres using gelatin immobilisation were compared. Hydrolysis, oxygen plasma treatment, and aminolysis were chosen as activation methods to introduce carboxyl (-COOH) and amino (-NH) functional groups on the surface before gelatin immobilisation. To covalently attach the gelatin, carbodiimide coupling was chosen for hydrolysed and plasma-treated materials, and glutaraldehyde crosslinking was used in the case of the aminolysed samples. Materials after physical entrapment of gelatin and immobilisation using carbodiimide coupling without previous activation were prepared as controls. The difference in gelatin amount on the surface, impact on the fibres morphology, molecular weight, and mechanical properties were observed depending on the type of modification and applied parameters of activation. It was shown that hydrolysis influences the surface of the material the most, whereas plasma treatment and aminolysis have an effect on the whole volume of the material. Despite this difference, bulk mechanical properties were affected for all the approaches. All materials were completely hydrophilic after functionalization. Cytotoxicity was not recognized for any of the samples. Gelatin immobilisation resulted in improved L929 cell morphology with the best effect for samples activated with hydrolysis and plasma treatment. Our study indicates that the use of any surface activation method should be limited to the lowest concentration/reaction time that enables subsequent satisfactory functionalization and the decision should be based on a specific function that the final scaffold material has to perform.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782664 | PMC |
http://dx.doi.org/10.3390/jfb13040272 | DOI Listing |
Carbohydr Polym
March 2025
National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Binzhou Zhongyu Food Company Limited, Binzhou Zhongyu Academy of Agricultural Sciences, National Industry Technical Innovation Center for Wheat Processing, Binzhou 256603, Shandong, China; Bohai Advanced Technology Institute, Binzhou 256606, Shandong, China.
In this study, the improvement effects of different polymeric saccharides, including native starch, maltodextrin and inulin, replacing 10 % sucrose on the physical characteristics and creaminess perception of non-fat whipped cream system were investigated. Systems containing maltodextrin had more uniform particle size and bubble distribution. This resulted in higher whipping performance and lower friction characteristics.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek St., 30-239 Krakow, Poland.
Oleogels are structured materials formed by immobilizing oil within a polymer network. This study aimed to synthesize bilayer foamed oleogels using Ecogel™ as an emulsifier-a natural gelling and emulsifying agent commonly used to stabilize emulsions. Ecogel™ is multifunctional, particularly in cosmetic formulations, where it aids in creating lightweight cream gels with a cooling effect.
View Article and Find Full Text PDFFoods
November 2024
College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
The objective of this study was to investigate the effects of retrograded resistant starch (RS3) (0, 2%, 4% and 6%; /) on the emulsion gel properties stabilized by myofibrillar proteins (MPs) and in vitro protein digestibility of the gels. The RS3 was prepared from corn or potato starch using the gelatinization-ultrasound-retrogradation method. The results showed that the addition of RS3 decreased the surface hydrophobicity ( < 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
The stratum corneum of the skin functions as a barrier, obstructing drug absorption and complicating the treatment of skin infections caused by pathogens such as bacteria, fungi, and viruses through topical methods. In this research, a microneedle patch was developed, which consists of gelatin-sucrose (SG) that encapsulates polydopamine-copper nanoparticles (PDA@Cu) at the tip for antibacterial purposes. Poly(ethylene glycol) diacrylate (PEGDA) served as the primary substrate for the microneedle shaft (PDA@Cu-SG/PEGDA).
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad, Liviu Rebreanu Street, 86, 310045 Arad, Romania.
The main goal of this research was to create biocompatible hydrogels using gelatin and a double cross-linking technique involving both covalent and ionic bonds to immobilize propolis. The covalent bonds were formed through Schiff base cross-links between protein-free amino groups (NH) from the lysine residue and aldehyde groups (CHO) produced by oxidizing sodium alginate with NaIO, while the ionic bonds were achieved using Mg ions. Hydrogel films were obtained by varying the molar ratios of -CHO/-NH under different pH conditions (3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!