Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Predicting beat-to-beat blood pressure has several clinical applications. While most machine learning models focus on accuracy, it is necessary to build models that explain the relationships of hemodynamical parameters with blood pressure without sacrificing accuracy, especially during exercise.
Objective: The aim of this study is to use the RuleFit model to measure the importance, interactions, and relationships among several parameters extracted from photoplethysmography (PPG) and electrocardiography (ECG) signals during a dynamic weight-bearing test (WBT) and to assess the accuracy and interpretability of the model results.
Methods: RuleFit was applied to hemodynamical ECG and PPG parameters during rest and WBT in six healthy young subjects. The WBT involves holding a 500 g weight in the left hand for 2 min. Blood pressure is taken in the opposite arm before and during exercise thereof.
Results: The root mean square error of the model residuals was 4.72 and 2.68 mmHg for systolic blood pressure and diastolic blood pressure, respectively, during rest and 4.59 and 4.01 mmHg, respectively, during the WBT. Furthermore, the blood pressure measurements appeared to be nonlinear, and interaction effects were observed. Moreover, blood pressure predictions based on PPG parameters showed a strong correlation with individual characteristics and responses to exercise.
Conclusion: The RuleFit model is an excellent tool to study interactions among variables for predicting blood pressure. Compared to other models, the RuleFit model showed superior performance. RuleFit can be used for predicting and interpreting relationships among predictors extracted from PPG and ECG signals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781478 | PMC |
http://dx.doi.org/10.3390/jcdd9120440 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!