AI Article Synopsis

  • Preen gland secretions in chickens contain fatty acids and volatile organic compounds that influence feather condition and communication, with variations based on genotype, sex, and feeding.
  • Research indicated significant differences in the composition of these secretions between fast-growing Ross 308 chickens and slower-growing ISA Dual chickens, particularly in fatty acid profiles and volume of the preen gland.
  • Findings suggest that genetic selection in commercial breeding, rather than feeding practices, largely determines the biochemical differences in preen secretions, potentially affecting the welfare of farmed poultry due to heightened vulnerability to parasites.

Article Abstract

Preen gland secretions spread on the feathers contain various chemical compounds dominated by fatty acids (FAs) and volatile organic compounds (VOCs). These chemicals may significantly affect plumage condition, microbial and ectoparasitic load on feathers, and chemical communication of birds. However, how chemical composition of preen secretions varies in commercially produced chickens with respect to their genotype, sex, and feeding regime remain largely unknown, as well as the welfare implications for farmed poultry. We found that while polyunsaturated fatty acids in chicken preen secretions differed significantly with genotype (P << 0.001), saturated fatty acids and monounsaturated fatty acids varied with genotype-dependent preen gland volume (P < 0.01). Chickens of meat-type fast-growing Ross 308 genotype had reduced preen gland volume and lower proportions of all FA categories in their preen secretions compared with dual-purpose slow-growing ISA Dual chickens. A total of 34 FAs and 77 VOCs with tens of unique FAs were detected in preen secretions of both genotypes. While differences in the relative proportion of 6 of the 10 most dominant VOCs in chicken preen gland secretions were related to genotype (P < 0.001), only 1 of the 10 most dominant VOCs showed a sex effect (P < 0.01), and only 2 of the 10 most dominant VOCs showed a genotype-dependent effect of feed restriction (P < 0.05). Feed restriction had no effect on the relative proportion of any of the FAs in chicken preen gland secretions. Moreover, we found that meat-type Ross 308 preen secretions were dominated by VOCs, which are proven attractants for poultry red mite and may also increase infestation with other ectoparasites and negatively influence overall odor-mediated intraspecific communication and welfare. This study shows that no feeding management, but long-term genetic selection in commercial breeding may be the main cause of the differences in the biochemistry and function of chicken preen secretions. This might have negative consequences for chemosignaling, antiparasitic, and antimicrobial potential of preen secretions and can lead to increased susceptibility to ectoparasites, plumage care disorders, and can affect the overall condition, welfare, and productivity of commercially bred chickens. Selection-induced preen gland impairments must therefore be considered and compensated by proper management of the chicken farm and increased care about animal well-being.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923712PMC
http://dx.doi.org/10.1093/jas/skac411DOI Listing

Publication Analysis

Top Keywords

genotype sex
8
chicken preen
8
preen gland
8
gland secretions
8
feathers chemical
8
fatty acids
8
preen secretions
8
effects genotype
4
sex feed
4
feed restriction
4

Similar Publications

Background: Alzheimer's disease (AD), characterized by significant brain volume reduction, is influenced by genetic predispositions related to brain volumetric phenotypes. While genome-wide association studies (GWASs) have linked brain imaging-derived phenotypes (IDPs) with AD, existing polygenic risk scores (PRSs) based models inadequately capture this relationship. We develop BrainNetScore, a network-based model enhancing AD risk prediction by integrating genetic associations between multiple brain IDPs and AD incidence.

View Article and Find Full Text PDF

Background: How tauopathy disrupts direct entorhinal cortex (EC) inputs to CA1 and their plasticity is understudied, despite its critical role in memory. Moreover, dysfunction of lateral EC (LEC) input is less clear, despite its relevance to early Alzheimer's disease pathogenesis. Here we examined how tau impacts long-term potentiation (LTP) of LEC→CA1 input in a transgenic model of tauopathy.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) identified the ATP binding cassette subfamily A member 7 (ABCA7) gene as increasing risk for Alzheimer's disease (AD). ABC proteins transport various molecules across extra and intra-cellular membranes. ABCA7 is part of the ABC1 subfamily and is expressed in brain cells including neurons, astrocytes, microglia, endothelial cells and pericytes.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Background: Microglia undergo varying regional dependent functional changes, which can exacerbate cognitive decline in Alzheimer's disease, but the full clinical relevance remains unclear. Ramified microglia survey the micro-environment and inert/amoeboid microglia engulf debris. A third morphological type; rod microglia, have been observed in a number of pathological conditions, but are relatively understudied.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.

Background: Alzheimer's disease (AD) has both genetic and environmental risk factors. Gene-environment interaction may help explain some missing heritability. There is strong evidence for cigarette smoking as a risk factor for AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!