Pd-Loaded Cellulose NanoSponge as a Heterogeneous Catalyst for Suzuki-Miyaura Coupling Reactions.

Gels

Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and INSTM Local Unit, Politecnico di Milano, 20131 Milan, Italy.

Published: December 2022

AI Article Synopsis

Article Abstract

The (eco)design and synthesis of durable heterogeneous catalysts starting from renewable sources derived from biomass waste represents an important step for reducing environmental impacts of organic transformations. Herein, we report the efficient loading of Pd(II) ions on an eco-safe cellulose-based organic support (CNS), obtained by thermal cross-linking between TEMPO-oxidized cellulose nanofibers and branched polyethyleneimine in the presence of citric acid. A 22.7% / Pd-loading on CNS was determined by the ICP-OES technique, while the metal distribution on the xerogel was evidenced by SEM-EDS analysis. XPS analysis confirmed the direct chelation of Pd(II) ions by means of the high number of amino groups present in the network, so that further functionalization of the support with specific ligands was not necessary. The new composite turned to be an efficient heterogeneous pre-catalyst for promoting Suzuki-Miyaura coupling reactions between aryl halides and phenyl boronic acid in water, obtaining yields higher than 90% in 30 min, by operating in a microwave reactor at 100 °C and with just 2% / of CNS-Pd catalyst with respect to aryl halides (4.5‱ for Pd). At the end of first reaction cycle, Pd(II) ions on the support resulted in being reduced to Pd(0) while maintaining the same catalytic efficiency. In fact, no leaching was observed at the end of reactions, and five cycles of recycling and reusing of CNS-Pd catalyst provided excellent results in terms of yields and selectivity in the desired products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778444PMC
http://dx.doi.org/10.3390/gels8120789DOI Listing

Publication Analysis

Top Keywords

pdii ions
12
suzuki-miyaura coupling
8
coupling reactions
8
aryl halides
8
cns-pd catalyst
8
pd-loaded cellulose
4
cellulose nanosponge
4
nanosponge heterogeneous
4
heterogeneous catalyst
4
catalyst suzuki-miyaura
4

Similar Publications

Gold(III) Ions Sorption on Amberlite XAD-16 Impregnated with TBP After Leaching Smart Card Chips.

Molecules

January 2025

Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland.

Owing to the intensive development of electrical and electronic equipment, there is an increasing demand for precious metals, which are often used for its production. Due to their scarce supply, it is important to recover them from secondary sources. A promising way to recover precious metals are impregnated resins.

View Article and Find Full Text PDF

Cross-linked chitosan as biomacromolecular adsorbents for adsorption of precious metal-chloride complexes from aqueous media.

Int J Biol Macromol

December 2024

Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon S7N 5C9, SK, Canada. Electronic address:

Precious metal recovery from secondary sources has received significant attention due to the reduced availability of precious metals from conventional sources. Herein, chitosan (CHT) was modified via cross-linking with glutaraldehyde (glu) to yield CHT-glu adsorbents with improved physicochemical and adsorption properties with precious metal ions (Au(III) and Pd(II)). CHT-glu adsorbents were prepared at variable glu ratios and characterized via complementary spectral (IR, C solids NMR, XPS) and thermogravimetry methods.

View Article and Find Full Text PDF

The extraction performance and complexation properties between some typical fission products (FPs) with phenanthroline-based ligands ,,-triethyl--tolyl-1,10-phenanthroline-2,9-dicarboxamide (DE-ET-DAPhen) and -ethyl-,-dioctyl--tolyl-1,10-phenanthroline-2,9-dicarboxamide (DO-ET-DAPhen) were described in this work. The low distributions of Ln(III) observed in the solvent extraction study showed the potential of the ligands for the separation of actinides and lanthanides in high-level liquid waste (HLLW). Further extraction studies on other FPs showed that the ligands could efficiently extract Pd(II) and Cd(II) using -octanol as a diluent.

View Article and Find Full Text PDF

This study investigates the effect of chloride levels on the mode of action of palladium complexes for the activation of propargyl- and allene-protected fluorophores and chemotherapeutic drugs through uncaging reactions. Four Pd(II) complexes were synthesized and characterized using various spectroscopic techniques to confirm their structure and electronic properties. Kinetic studies and density functional theory calculations revealed that chloride ions in phosphate buffered saline (PBS) significantly enhance catalytic efficiency, particularly for allenyl-protected substrates compared to propargylic counterparts.

View Article and Find Full Text PDF

Native corncob-derived biosorbent with grafted 1,3,4-thiadiazole for enhanced adsorption of palladium in metallurgical wastewater.

J Colloid Interface Sci

March 2025

School of Chemical Science and Technology, Yunnan University, No. 2, Cuihu North Road, Kunming 650091, China. Electronic address:

The reuse of agricultural waste brings significant benefits but still faces a multitude of challenges. In this work, novel precious metal sorbents were constructed by grafting 1,3,4-thiadiazole-2-thiol (MTD) and 2,5-dithiadiazole-1,3,4-thiadiazole (DMTD) onto native corncob, which could rapidly and selectively recover palladium (Pd) from metallurgical wastewater. The characterization of the sorbents by powder X-ray diffraction indicated that introducing MTD or DMTD on native corncob did not alter the crystallinity and inherent structural framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!