The vehicle routing problem with time windows (VRPTW) is a classical optimization problem. There have been many related studies in recent years. At present, many studies have generally analyzed this problem on the two-dimensional plane, and few studies have explored it on spherical surfaces. In order to carry out research related to the distribution of goods by unmanned vehicles and unmanned aerial vehicles, this study carries out research based on the situation of a three-dimensional sphere and proposes a three-dimensional spherical VRPTW model. All of the customer nodes in this problem were mapped to the three-dimensional sphere. The chimp optimization algorithm is an excellent intelligent optimization algorithm proposed recently, which has been successfully applied to solve various practical problems and has achieved good results. The chimp optimization algorithm (ChOA) is characterized by its excellent ability to balance exploration and exploitation in the optimization process so that the algorithm can search the solution space adaptively, which is closely related to its outstanding adaptive factors. However, the performance of the chimp optimization algorithm in solving discrete optimization problems still needs to be improved. Firstly, the convergence speed of the algorithm is fast at first, but it becomes slower and slower as the number of iterations increases. Therefore, this paper introduces the multiple-population strategy, genetic operators, and local search methods into the algorithm to improve its overall exploration ability and convergence speed so that the algorithm can quickly find solutions with higher accuracy. Secondly, the algorithm is not suitable for discrete problems. In conclusion, this paper proposes an improved chimp optimization algorithm (MG-ChOA) and applies it to solve the spherical VRPTW model. Finally, this paper analyzes the performance of this algorithm in a multi-dimensional way by comparing it with many excellent algorithms available at present. The experimental result shows that the proposed algorithm is effective and superior in solving the discrete problem of spherical VRPTW, and its performance is superior to that of other algorithms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776025PMC
http://dx.doi.org/10.3390/biomimetics7040241DOI Listing

Publication Analysis

Top Keywords

optimization algorithm
24
chimp optimization
16
algorithm
13
spherical vrptw
12
optimization
9
vehicle routing
8
routing problem
8
problem time
8
time windows
8
three-dimensional sphere
8

Similar Publications

Background: Sepsis is a severe complication in leukemia patients, contributing to high mortality rates. Identifying early predictors of sepsis is crucial for timely intervention. This study aimed to develop and validate a predictive model for sepsis risk in leukemia patients using machine learning techniques.

View Article and Find Full Text PDF

Background: Multidrug-resistant Klebsiella pneumoniae (MDR-KP) infections pose a significant global healthcare challenge, particularly due to the high mortality risk associated with septic shock. This study aimed to develop and validate a machine learning-based model to predict the risk of MDR-KP-associated septic shock, enabling early risk stratification and targeted interventions.

Methods: A retrospective analysis was conducted on 1,385 patients with MDR-KP infections admitted between January 2019 and June 2024.

View Article and Find Full Text PDF

Pumps in Water Distribution Networks (WDNs) adequately provide effective pressure where low elevation or high head losses are detected within the system. One of the most effective strategies to ensure economic sustainability is Pump Scheduling (PS), assuring the optimization of pump management and enabling significant energy cost saving. Meta-heuristic algorithms can be applied to Pump Scheduling, given their ability to provide reliable global solutions, further complemented by limited computational efforts.

View Article and Find Full Text PDF

Missing values arise routinely in real-world sequential (string) datasets due to: (1) imprecise data measurements; (2) flexible sequence modeling, such as binding profiles of molecular sequences; or (3) the existence of confidential information in a dataset which has been deleted deliberately for privacy protection. In order to analyze such datasets, it is often important to replace each missing value, with one or more letters, in an efficient and effective way. Here we formalize this task as a combinatorial optimization problem: the set of constraints includes the of the missing value (i.

View Article and Find Full Text PDF

Anesthetics are crucial in surgical procedures and therapeutic interventions, but they come with side effects and varying levels of effectiveness, calling for novel anesthetic agents that offer more precise and controllable effects. Targeting Gamma-aminobutyric acid (GABA) receptors, the primary inhibitory receptors in the central nervous system, could enhance their inhibitory action, potentially reducing side effects while improving the potency of anesthetics. In this study, we introduce a proteomic learning of GABA receptor-mediated anesthesia based on 24 GABA receptor subtypes by considering over 4000 proteins in protein-protein interaction (PPI) networks and over 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!