Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nonunion bone fractures can impact the quality of life and represent a major economic burden. Scaffold-based tissue engineering has shown promise as an alternative to bone grafting. Achieving desirable bone reconstruction requires appropriate surface properties, together with optimizing the internal architecture of 3D scaffolds. This study presents the surface modification of poly(lactic-co-glycolic acid) (PLGA), collagen, and PLGA-collagen via an argon plasma treatment. Argon plasma can modify the surface chemistry and topography of biomaterials and improve in vivo integration. Solvent-cast films were prepared using 1,1,1,3,3,3-hexafluoro-2-propanol and characterized via differential scanning calorimetry, thermogravimetric analysis, contact angle measurement, and critical surface tension analysis. For PLGA films, the water contact angle dropped from 70° to 42°, whereas the diiodomethane contact angle reduced from 53° to 32° after the plasma treatment. A set of PLGA-collagen formulations were loaded with nanohydroxyapatite (nHA) and polyethylene glycol (PEG) to enhance their osteoconductivity and hydrophilicity. Then, 3D scaffolds were fabricated using a 3D Bioplotter and characterized via Fourier-transform infrared (FTIR) spectroscopy. A bicinchoninic acid assay (BCA) was used to compare the protein release from the untreated and plasma-treated scaffolds into phosphate-buffered saline (PBS). The plasma-treated scaffolds had a lower protein release, and the difference compared to the untreated scaffolds was statistically significant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776356 | PMC |
http://dx.doi.org/10.3390/biomimetics7040218 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!