Extracellular vesicles (EV) are important mediators of intercellular communication and are potential candidates for cancer immunotherapy. Immune checkpoint blockade, specifically targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis, mitigates T-cell exhaustion, but is only effective in a subset of patients with cancer. Reasons for therapy resistance include low primary T-cell activation to cancer antigens, poor antigen presentation, and reduced T-cell infiltration into the tumor. Therefore, combination strategies have been extensively explored. Here, we investigated whether EV therapy could induce susceptibility to anti-PD-1 or anti-PD-L1 therapy in a checkpoint-refractory B16 melanoma model. Injection of dendritic cell-derived EVs, but not checkpoint blockade, induced a potent antigen-specific T-cell response and reduced tumor growth in tumor-bearing mice. Combination therapy of EVs and anti-PD-1 or anti-PD-L1 potentiated immune responses to ovalbumin- and α-galactosylceramide-loaded EVs in the therapeutic model. Moreover, combination therapy resulted in increased survival in a prophylactic tumor model. This demonstrates that EVs can induce potent antitumor immune responses in checkpoint refractory cancer and induce anti-PD-1 or anti-PD-L1 responses in a previously nonresponsive tumor model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896027 | PMC |
http://dx.doi.org/10.1158/2326-6066.CIR-22-0540 | DOI Listing |
TIGIT and PVRIG are immune checkpoints co-expressed on activated T and NK cells, contributing to tumor immune evasion. Simultaneous blockade of these pathways may enhance therapeutic efficacy, positioning them as promising dual targets for cancer immunotherapy. This study aimed to develop a bispecific antibody (BsAb) to co-target TIGIT and PVRIG.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
January 2025
Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Mexico.
Background: Cancer immunotherapy is a relatively new approach to cancer treatment. Peptides that target specific pathways and cells involved in immunomodulation can potentially improve the efficacy of cancer therapy. Recently, we reported iPD-L1 as a novel inhibitor peptide that specifically targets the cancer cell ligand PD-L1 (programmed death ligand 1).
View Article and Find Full Text PDFCureus
December 2024
Gastroenterology, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, JPN.
Typically, patients with advanced cholangiocarcinoma have a poor prognosis because of the limited effective chemotherapy options available. Studies on genotype-directed therapies for cholangiocarcinoma are increasing. However, limited clinical data are currently available for evaluating the efficacy of molecular-targeted therapies.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
University of Chicago, Chicago, IL, United States.
Based on the notion that hypomorphic germline genetic variants are linked to autoimmune diseases, we reasoned that novel targets for cancer immunotherapy might be identified through germline variants associated with greater T-cell infiltration into tumors. Here, we report that while investigating germline polymorphisms associated with a tumor immune gene signature, we identified PKCδ as a candidate. Genetic deletion of PKCδ in mice resulted in improved endogenous antitumor immunity and increased efficacy of anti-PD-L1.
View Article and Find Full Text PDFCochrane Database Syst Rev
January 2025
Saúde Baseada em Evidências, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
Background: Glioblastoma multiforme (GBM) is the most common and aggressive adult glioma (16-month median survival). Its immunosuppressive microenvironment limits the efficacy of immune checkpoint inhibitors (ICIs).
Objectives: To assess the effects of the ICIs antibodies anti-programmed cell death 1 (anti-PD-1) and anti-programmed cell death ligand 1 (anti-PD-L1) in treating adults with diffuse glioma.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!