We present a sub-picosecond resolved investigation of the structural solvent reorganization and geminate recombination dynamics following 400 nm two-photon excitation and photodetachment of a valence p electron from the aqueous atomic solute, I(aq). The measurements utilized time-resolved X-ray Absorption Near Edge Structure (TR-XANES) spectroscopy and X-ray Solution Scattering (TR-XSS) at the Linac Coherent Light Source x-ray free electron laser in a laser pump/x-ray probe experiment. The XANES measurements around the L-edge of the generated nascent iodine atoms (I) yield an average electron ejection distance from the iodine parent of 7.4 ± 1.5 Å with an excitation yield of about 1/3 of the 0.1M NaI aqueous solution. The kinetic traces of the XANES measurement are in agreement with a purely diffusion-driven geminate iodine-electron recombination model without the need for a long-lived (I:e) contact pair. Nonequilibrium classical molecular dynamics simulations indicate a delayed response of the caging HO solvent shell and this is supported by the structural analysis of the XSS data: We identify a two-step process exhibiting a 0.1 ps delayed solvent shell reorganization time within the tight H-bond network and a 0.3 ps time constant for the mean iodine-oxygen distance changes. The results indicate that most of the reorganization can be explained classically by a transition from a hydrophilic cavity with a well-ordered first solvation shell (hydrogens pointing toward I) to an expanded cavity around I with a more random orientation of the HO molecules in a broadened first solvation shell.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0107224DOI Listing

Publication Analysis

Top Keywords

structural solvent
8
solvent reorganization
8
recombination dynamics
8
solvent shell
8
solvation shell
8
tracking structural
4
solvent
4
reorganization
4
reorganization recombination
4
dynamics photoabstraction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!