We present a new implementation for computing spin-orbit couplings (SOCs) within a time-dependent density-functional theory (TD-DFT) framework in the standard spin-conserving formulation as well in the spin-flip variant (SF-TD-DFT). This approach employs the Breit-Pauli Hamiltonian and Wigner-Eckart's theorem applied to the reduced one-particle transition density matrices, together with the spin-orbit mean-field treatment of the two-electron contributions. We use a state-interaction procedure and compute the SOC matrix elements using zero-order non-relativistic states. Benchmark calculations using several closed-shell organic molecules, diradicals, and a single-molecule magnet illustrate the efficiency of the SOC protocol. The results for organic molecules (described by standard TD-DFT) show that SOCs are insensitive to the choice of the functional or basis sets, as long as the states of the same characters are compared. In contrast, the SF-TD-DFT results for small diradicals (CH, NH , SiH, and PH ) show strong functional dependence. The spin-reversal energy barrier in a Fe(III) single-molecule magnet computed using non-collinear SF-TD-DFT (PBE0, ωPBEh/cc-pVDZ) agrees well with the experimental estimate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0130868 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!