Objective: Recent evidence supports a link between increased TDP-43 burden and the presence of an APOE4 gene allele in Alzheimer's disease (AD); however, it is difficult to conclude the direct effect of APOE on TDP-43 pathology due to the presence of mixed AD pathologies. The goal of this study is to address how APOE isoforms impact TDP-43 pathology and related neurodegeneration in the absence of typical AD pathologies.
Methods: We overexpressed human TDP-43 via viral transduction in humanized APOE2, APOE3, APOE4 mice, and murine Apoe-knockout (Apoe-KO) mice. Behavior tests were performed across ages. Animals were harvested at 11 months of age and TDP-43 overexpression-related neurodegeneration and gliosis were assessed. To further address the human relevance, we analyzed the association of APOE with TDP-43 pathology in 160 postmortem brains from autopsy-confirmed amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with motor neuron disease (FTLD-MND) in the Mayo Clinic Brain Bank.
Results: We found that TDP-43 overexpression induced motor function deficits, neuronal loss, and gliosis in the motor cortex, especially in APOE2 mice, with much milder or absent effects in APOE3, APOE4, or Apoe-KO mice. In the motor cortex of the ALS and FTLD-MND postmortem human brains, we found that the APOE2 allele was associated with more severe TDP-43-positive dystrophic neurites.
Interpretation: Our data suggest a genotype-specific effect of APOE on TDP-43 proteinopathy and neurodegeneration in the absence of AD pathology, with the strongest association seen with APOE2. ANN NEUROL 2023;93:830-843.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471132 | PMC |
http://dx.doi.org/10.1002/ana.26580 | DOI Listing |
Mol Neurodegener
January 2025
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
TREM2 is a signaling receptor expressed on microglia that has emerged as an important drug target for Alzheimer's disease and other neurodegenerative diseases. While a number of TREM2 ligands have been identified, little is known regarding the structural details of how they engage. To better understand this, we created a protein library of 28 different TREM2 variants that could be used to map interactions with various ligands using biolayer interferometry.
View Article and Find Full Text PDFJ Clin Med
November 2024
Reina Sofía Alzheimer Center, CIEN Foundation, ISCIII, 28031 Madrid, Spain.
Acta Neuropathol
November 2024
Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA.
Pure limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (pure LATE-NC) is a term used to describe brains with LATE-NC but lacking intermediate or severe levels of Alzheimer's disease neuropathologic changes (ADNC). Focusing on pure LATE-NC, we analyzed data from the National Alzheimer's Coordinating Center (NACC) Neuropathology Data Set, comprising clinical and pathological information aggregated from 32 NIH-funded Alzheimer's Disease Research Centers (ADRCs). After excluding subjects dying with unusual conditions, n = 1,926 autopsied subjects were included in the analyses.
View Article and Find Full Text PDFRes Sq
September 2024
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.
TREM2 is a signaling receptor expressed on microglia that has emerged as an important drug target for Alzheimer's disease and other neurodegenerative diseases. While a number of TREM2 ligands have been identified, little is known regarding the structural details of how they engage. To better understand this, we created a protein library of 28 different TREM2 variants that could be used to map interactions with various ligands using biolayer interferometry.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
May 2024
Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!