The identification of meaningful functional magnetic resonance imaging (fMRI) biomarkers requires measures that reliably capture brain performance across different subjects and over multiple scanning sessions. Recent developments in fMRI acquisition, such as the introduction of multiband (MB) protocols and in-plane acceleration, allow for increased scanning speed and improved temporal resolution. However, they may also lead to reduced temporal signal to noise ratio and increased signal leakage between simultaneously excited slices. These methods have been adopted in several scanning modalities including diffusion weighted imaging and fMRI. To our knowledge, no study has formally compared the reliability of the same resting-state fMRI (rs-fMRI) metrics (amplitude of low-frequency fluctuations; seed-to-voxel and region of interest [ROI]-to-ROI connectivity) across conventional single-band fMRI and different MB acquisitions, with and without in-plane acceleration, across three sessions. In this study, 24 healthy older adults were scanned over three visits, on weeks 0, 1, and 4, and, on each occasion, underwent a conventional single band rs-fMRI scan and three different rs-fMRI scans with MB factors 4 and 6, with and without in-plane acceleration. Across all three rs-fMRI metrics, the reliability scores were highest with MB factor 4 with no in-plane acceleration for cortical areas and with conventional single band for subcortical areas. Recommendations for future research studies are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980889 | PMC |
http://dx.doi.org/10.1002/hbm.26180 | DOI Listing |
Phys Chem Chem Phys
January 2025
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No 10, Bandung 40132, Jawa Barat, Indonesia.
The magnetic, electronic, and topological properties of GdPtBi were systematically investigated using first-principles density functional theory (DFT) calculations. Various magnetic configurations were examined, including ferromagnetic (FM) and antiferromagnetic (AFM) states, with particular focus on AFM states where the Gd magnetic moments align either parallel (AFM) or perpendicular (AFM) to the [111] crystal direction. For AFM, the in-plane angles were varied at = 0°, 15°, and 30° (denoted as AFM, AFM, and AFM, respectively).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
Imine-based covalent organic frameworks (COFs) have been widely applied in photocatalytic hydrogen peroxide (HO) production because of their highly crystalline properties and tunable chemical structures. However, the inherent polarization of C═N linkage brings a high energy barrier for π-electron delocalization, impeding the in-plane photoelectron transfer process, which leads to an inadequate efficiency of HO photosynthesis. In addition, the chemical stability of most imine-COFs remains insufficient due to the reversible nature of imine linkage.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan.
For over a century, the Hall effect, a transverse effect under an out-of-plane magnetic field or magnetization, has been a cornerstone for magnetotransport studies and applications. Modern theoretical formulation based on the Berry curvature has revealed the potential that even an in-plane magnetic field can induce an anomalous Hall effect, but its experimental demonstration has remained difficult due to its potentially small magnitude and strict symmetry requirements. Here, we report observation of the in-plane anomalous Hall effect by measuring low-carrier density films of magnetic Weyl semimetal EuCd_{2}Sb_{2}.
View Article and Find Full Text PDFNature
December 2024
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
Recently, the bilayer nickelate LaNiO has been discovered as a new superconductor with transition temperature T near 80 K under high pressure. Despite extensive theoretical and experimental work to understand the nature of its superconductivity, the requirement of extreme pressure restricts the use of many experimental probes and limits its application potential. Here, we present signatures of superconductivity in LaNiO thin films at ambient pressure, facilitated by the application of epitaxial compressive strain.
View Article and Find Full Text PDFSci Adv
December 2024
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
Charge transfer or redistribution at oxide heterointerfaces is a critical phenomenon, often leading to remarkable properties such as two-dimensional electron gas and interfacial ferromagnetism. Despite studies on LaNiO/LaFeO superlattices and heterostructures, the direction and magnitude of the charge transfer remain debated, with some suggesting no charge transfer due to the high stability of Fe (3d). Here, we synthesized a series of epitaxial LaNiO/LaFeO superlattices and demonstrated partial (up to ~0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!