First-principles theory-based comparative electronic-transport studies were performed for an atomic chain of Au, a bare CdTe cage-like cluster, and a single transition metal (TM) (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd) atom encapsulated within the CdTe using Au(111) as the electrodes. The bare cluster was semiconducting and acted as a tunnel barrier up to a particular applied bias and then beyond that the device displayed a linear current-voltage relationship. Several TMs (Ti, V, Cr, Mn, Fe) encapsulated in the cage showed a half-metallic behavior and spin-filtering effect in the characteristics of the device. Detailed qualitative and quantitative analyses of the characteristics for metallic, semiconducting, and half-metallic nanostructures were carried out for quantifying the use of these TMs in spintronic device applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr06134aDOI Listing

Publication Analysis

Top Keywords

tunnel barrier
8
transition metal
8
metal atom
8
atom encapsulated
8
barrier spin
4
spin filter
4
filter electronic-transport
4
electronic-transport characteristics
4
characteristics transition
4
encapsulated small
4

Similar Publications

In recent years, mobile laser measurement systems have markedly enhanced the capabilities of deformation detection and defect identification within metro tunnels, attributed to their superior efficiency, precision, and versatility. Nevertheless, challenges persist, including substantial equipment costs, inadequate after-sales support, technological barriers, and limitations in customization. This paper develops a mobile laser measurement system that has been specifically developed for the purpose of detecting deformation in metro tunnels.

View Article and Find Full Text PDF

A solution to the problem of resonant tunneling current saturation is proposed. This problem does not allow, within the traditional compact models, a correct qualitative and quantitative analysis to be carried out of the volt-ampere characteristics of double-barrier heterostructures. The reason for this problem is the asymptotic behavior of the function describing the structure transparency, so a non-saturating compact model was proposed to solve the problem of current transfer analysis in the region of negative differential conductivity.

View Article and Find Full Text PDF

Carpal Tunnel Syndrome (CTS) is a prevalent neuropathic disorder caused by chronic compression of the median nerve, leading to sensory and motor impairments. Conventional treatments, such as corticosteroid injections, wrist splinting, and surgical decompression, often fail to provide adequate outcomes for chronic or recurrent cases, emphasizing the need for innovative therapies. Hydrogels, highly biocompatible three-dimensional biomaterials with customizable properties, hold significant potential for CTS management.

View Article and Find Full Text PDF

In Situ, Treatment with Guanidinium Chloride Ligand Enables Efficient Blue Quantum Dot Light-Emitting Diodes with 23.5% External Quantum Efficiency.

Adv Mater

January 2025

National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China.

The poor efficiency and stability of blue Quantum Dot Light-Emitting diodes (QLED) hinders the practical applications of QLEDs full-color displays. Excessive electron injection, insufficient hole injection, and abundant defects on the surface of quantum dots (QD) are the main issues limiting the performance of blue devices. Herein, an in situ treatment with bipolar small molecule polydentate ligand-guanidine chloride (GACl) is proposed to simultaneously suppress excessive electron injection, patch surface defects of QDs and enhance hole injection.

View Article and Find Full Text PDF

Van der Waals (vdW) contact has been widely regarded as one of the most potential strategies for exploiting low-resistance metal-semiconductor junctions (MSJs) based on atomically thin transition-metal dichalcogenides (TMDs), but this method is still not efficient due to weak metal-TMD interfacial interactions. Therefore, an understanding of interfacial interactions between metals and TMDs is essential for achieving low-resistance contacts with weak Fermi level pinning (FLP). Herein, we report how the interfacial interactions between metals and TMDs affect the electrical contacts by considering more than 90 MSJs consisting of a semiconducting TMD channel and different types of metal electrodes, including bulk metals, MXenes, and metallic TMDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!