A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. | LitMetric

Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence.

Sci Bull (Beijing)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China. Electronic address:

Published: September 2022

Daytime radiative cooling with high solar reflection and mid-infrared emission offers a sustainable way for cooling without energy consumption. However, so far sub-ambient daytime radiative coolers typically possess white/silver color with limited aesthetics and applications. Although various colored radiative cooling designs have been pursued previously, multi-colored daytime radiative cooling to a temperature below ambient has not been realized as the solar thermal effect in the visible range lead to significant thermal load. Here, we demonstrate that photoluminescence (PL) based colored radiative coolers (PCRCs) with high internal quantum efficiency enable sub-ambient full-color cooling. As an example of experimental demonstration, we develop a scalable electrostatic-spinning/inkjet printing approach to realize the sub-ambient multi-colored radiative coolers based on quantum-dot photoluminescence. The unique features of obtained PCRCs are that the quantum dots atop convert the ultraviolet-visible sunlight into emitted light to minimize the solar-heat generation, and cellulose acetate based nanofibers as the underlayer that strongly reflect sunlight and radiate thermal load. As a result, the green, yellow and red colors of PCRCs achieve temperatures of 5.4-2.2 °C below ambient under sunlight (peak solar irradiance >740 W m), respectively. With the excellent cooling performance and scalable process, our designed PCRC opens a promising pathway towards colorful applications and scenarios of radiative cooling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2022.08.028DOI Listing

Publication Analysis

Top Keywords

radiative cooling
20
daytime radiative
12
radiative coolers
12
sub-ambient full-color
8
radiative
8
cooling
8
quantum-dot photoluminescence
8
colored radiative
8
thermal load
8
sub-ambient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!