A warming climate may reduce health risks of hypoxia on the Qinghai-Tibet Plateau.

Sci Bull (Beijing)

State Key Laboratory of Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province and Beijing Normal University, Xining 810016, China; Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management and Ministry of Education, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China. Electronic address:

Published: February 2022

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2021.10.003DOI Listing

Publication Analysis

Top Keywords

warming climate
4
climate reduce
4
reduce health
4
health risks
4
risks hypoxia
4
hypoxia qinghai-tibet
4
qinghai-tibet plateau
4
warming
1
reduce
1
health
1

Similar Publications

The establishment of conservation areas is an important strategy for endangered species conservation. In this study, we investigated the distributions of suitable habitat areas for three level 1 endangered Cupressaceae plants (, , and ) in China and used the Marxan model to delineate the priority conservation areas for each species. The results showed that had the broadest suitable growing area under the current climate in China and is followed by , with an area of 91 × 10 km, and had the smallest suitable habitat areas at only 7 × 10 km.

View Article and Find Full Text PDF

Drought-Induced Weakening of Temperature Control on Ecosystem Carbon Uptake Across Northern Lands.

Glob Chang Biol

January 2025

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.

Rapid warming in northern lands has led to increased ecosystem carbon uptake. It remains unclear, however, whether and how the beneficial effects of warming on carbon uptake will continue with climate change. Moreover, the role played by water stress in temperature control on ecosystem carbon uptake remains highly uncertain.

View Article and Find Full Text PDF

Background: Plants often shift their phenology in response to climate warming, with potentially important ecological consequences. Relative differences in the abilities of native and nonnative plants to track warming temperatures by adjusting their phenologies could have cascading consequences for ecosystems. Our general understanding of nonnative species leads us to believe these species may be more phenologically sensitive than native species, but evidence for this has been mixed, likely due, in part, to the myriad of diverse ecological contexts in which nonnatives have been studied.

View Article and Find Full Text PDF

Climate-Driven Escalation of Global PM Health Burden from Wildland Fires.

Environ Sci Technol

January 2025

College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.

Wildland fires constitute a major source of ambient fine particulate matter (PM), significantly impacting air quality and public health. As the climate becomes warmer and drier, fire frequency is projected to rise, yet how the associated health impacts of fire-sourced PM (FPM) respond to climate change remains vague. In this study, we modeled the global concentration and associated premature deaths of FPM over the past two decades.

View Article and Find Full Text PDF

Ormosia microphylla is a nationally prioritized wild plant in China but effects of likely future climate change have been poorly studied. Here distribution data of O. microphylla and environmental data with an optimized MaxEnt maximum entropy model were used to predict potentially suitable areas under current and future climate scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!