Asthma poses an increased risk for cardiovascular disorders, suggesting that allergy, which is an underlying process in asthma, causes atypical functioning of organs other than lungs. In a previous study in a guinea pig asthma model, we concluded that allergic sensitization increased aorta contractile responses to 5-HT. To further characterize these responses, here we explored the role of the 5-HT2 receptors family. We found that TCB-2 (5-HT2A agonist) and WAY161503 (5-HT2C agonist) induced aorta contractions resembling those elicited by 5-HT but less intense (~43 % and ~25 %, respectively). In these experiments, aortas from sensitized guinea pigs showed increased contractions to TCB-2, but not to WAY161503. In turn, MDL 100907 (5-HT2A antagonist) and RS-102221 (5-HT2C antagonist) caused a notably and a mild reduction of the 5-HT-induced contractions, respectively, with no differences seen between sensitized and non-sensitized tissues. BW723C86 (5-HT2B agonist) did not induce contractile responses and RS-127445 (5-HT2B antagonist) did not modify the contractile responses to 5-HT. In non-sensitized aortas, the pattern of protein expression of receptors was 5HT2B>5-HT2A=5-HT2C, which did not change in sensitized animals. In conclusion, we found that allergic sensitization increased the aorta contractile responses to 5-HT, partly mediated by enhanced responses of 5-HT2A receptors, which was unrelated to changes in the expression of these receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069811 | PMC |
http://dx.doi.org/10.33549/physiolres.934968 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!