The preparation of multifunctionalized luminophores with full-color emission based on an identical core skeleton is a significative but challenging research topic. In this work, eight donor-donor-acceptor (D-D-A)-type luminogens based on a central carbazole core bearing a C hydrocarbon chain were designed by using different kinds of donor and acceptor units on the left and right, and synthesized in good yields. These D-D-A carbazole derivatives display deep-blue, sky-blue, cyan, green, yellow-green, yellow, orange and red fluorescence in the solid state, achieving full-color emission covering the whole visible light range under UV light illumination. Notably, the dicyano-functionalized triphenylamine-containing carbazole derivative exhibits rare aggregation-induced near-infrared emission and red-to-near-infrared mechano-fluorochromism with high contrast beyond 100 nm. Furthermore, the red-emissive luminogen can serve as a potential candidate for cell imaging and photodynamic therapy (PDT). This work not only provides reference for the construction of full-color emissive systems but also opens a new avenue to the preparation of multifunctionalized luminophores capable of simultaneous application in near-Infrared mechanical-force sensors and PDT fields.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202203797DOI Listing

Publication Analysis

Top Keywords

full-color emissive
8
d-d-a carbazole
8
aggregation-induced near-infrared
8
near-infrared emission
8
photodynamic therapy
8
preparation multifunctionalized
8
multifunctionalized luminophores
8
full-color emission
8
full-color
4
emissive d-d-a
4

Similar Publications

The substituent effect has a significant influence on the optical properties of spectral shape, width, and wavelength, and the intensities of the maximum peaks of emission (EMI) and circularly polarized luminescence (CPL). In this work, we conducted a systematic theoretical study to investigate how substituents alter the optical response in the EMI and CPL spectra of three [7]helicene derivatives at the vibronic level. To incorporate the vibronic effect, a state-of-the-art time-dependent (TD) method was used to achieve the fully converged spectra.

View Article and Find Full Text PDF

The study of structure-activity relationships is a top priority in the development of nontraditional luminescent materials. In this work, nonconjugated polyurethanes (PUs) with full-color emission (red, green, and blue) are easily obtained by control of the diol monomer structure and the polymerization conditions. Selected diol monomers introduced single, double, or triple bond repeating units into the main chain of the PUs, in order to understand how unsaturated bonds and H-bonds affect their luminescence from a molecular orbital viewpoint.

View Article and Find Full Text PDF

White Light-Emitting Flexible Displays with Quantum-Dot Film and Greenish-Blue Organic Light-Emitting Diodes.

Micromachines (Basel)

December 2024

Department of Semiconductor Engineering, Gachon University, 1342 Seongnam-Daero, Soojung-gu, Seongnam 13120, Republic of Korea.

White organic light-emitting diodes (OLEDs) represent a significant technology in the display industry for the achievement of full color. However, sophisticated technologies are required for white light emission. In this paper, we developed a simple white light-emitting display device using a quantum-dot (QD) film and a greenish-blue OLED.

View Article and Find Full Text PDF

Latent fingerprints (LFPs) are invisible impressions that need to be developed before being used for criminal investigation; however, existing fingerprint visualization techniques face challenges, such as complex preparation and poor contrast. To advance practical fingerprint detection, green-emissive micron-sized curcumin/kaolin composites were synthesized a facile and cost-effective one-step physical cross-linking method, which exhibited unprecedented performance in developing diversified marks, including LFPs, knuckle prints, palm prints, and footprints, with clear three-level details on various substrates. Notably, the powders successfully developed LFPs that were aged for 30 days and even up to 100 days, meeting the stringent requirements for comprehensive forensic application.

View Article and Find Full Text PDF

An Efficient Ultra-Narrowband Yellow Emitter Based on a Double-Boron-Embedded Tetraazacyclophane.

Angew Chem Int Ed Engl

January 2025

State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China.

Ultra-narrowband and highly modifiable multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are crucial for realizing high-performance wide-color-gamut display applications. Despite progress, most MR-TADF emitters remain confined to blue and green wavelengths, with difficulties extending into longer wavelengths without significant spectral broadening, which compromises color purity in full-color organic light-emitting diode (OLED) displays. In this work, we present a novel tetraazacyclophane-based architecture embedding dual boron atoms to remarkedly enhance intramolecular charge transfer through the strategic positioning of boron and nitrogen atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!