As a new two-dimensional (2D) material, transition metal carbides and nitrides (MXenes) have attracted much attention because of their excellent physical and chemical properties. In recent years, MXenes have been widely applied in the biological field due to their high biocompatibility, abundant surface groups, good conductivity, and photothermal properties. Here, the main synthesis methods of MXenes and the analysis of the advantages and disadvantages of each method are presented in detail. Then, the latest developments of MXenes in the biological field, including biosensing, antibacterial activity, reactive oxygen species (ROS) and free radical scavenging, tissue repair and antitumor therapy are comprehensively reviewed. Finally, the current challenges and future development trends of MXenes in biological applications are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2tb01503j | DOI Listing |
Mikrochim Acta
January 2025
Applied Science Department, The NorthCap University, 122017, Gurugram, Haryana, India.
For the first time, a TiCT-MXene and poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) composite-modified electrode has been developed for electrochemical detection of the bilirubin (BR) by molecularly imprinted ortho-phenylenediamine (o-PD). BR is a biomarker for liver-related diseases. High levels of BR imply liver dysfunction; hence, its exact and rapid measurement is indispensable to its immediate diagnosis and treatment.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics, Xiamen University, Xiamen 361005, China.
The electrochemical nitric oxide reduction reaction (eNORR) is an efficient method for converting aqueous NO into NH. The pursuit of innovative electrocatalysts with enhanced activity, selectivity, durability, and cost-effectiveness for NORR remains a research focus. In this study, using particle swarm optimization (PSO) searches, density functional theory (DFT), and the constant-potential method (CPM), we predict two stable two-dimensional FeC monolayers, designated as α-FeC and β-FeC, as promising electrocatalysts for the NORR.
View Article and Find Full Text PDFNano Lett
January 2025
School of Environment, Tsinghua University, Beijing 100084, China.
Exploiting cost-effective hydrogen evolution reaction (HER) catalysts is crucial for sustainable hydrogen production. However, currently reported nanocatalysts usually cannot simultaneously sustain high catalytic activity and long-term durability. Here, we report the efficient synthesis and activity tailoring of a chainmail catalyst, isolated platinum atom anchored tungsten carbide nanocrystals encapsulated inside carbon nanotubes (Pt/WC@CNTs), by confined flash Joule heating technique.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
Understanding the behavior of high-entropy carbides (HECs) under oxygen-containing environments is of particular importance for their promising applications in structural components, catalysis, and energy-related fields. Herein, the structural evolution of (Ta, Ti, Cr, Nb)C (HEC-1) nanoparticles (NPs) is tracked in situ during the oxidation at the atomic scale by using an open-cell environmental aberration-corrected scanning transmission electron microscope. Three key stages are clearly discerned during the oxidation of HEC-1 NPs at the atomic level below 900 °C: i) increased amorphization of HEC-1 NPs from 300 to 500 °C due to the energetically favorable formation of carbon vacancies and substitution of carbon with oxygen atoms; ii) nucleation and subsequent growth of locally ordered nanocluster intermediates within the generated amorphous oxides from 500 to 800 °C; and iii) final one-step crystallization of non-equimolar MeO and MeO (Me = metallic elements, Ta, Ti, Cr, and Nb) high-entropy oxides above 800 °C, accompanied with the reduction in atomic defects.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Peking University, College of Chemistry and Molecular Engineering, 292 Chengfu Road, 100871, Beijing, CHINA.
Metal carbides with earth-abundant elements are widely regarded as promising alternatives of noble metal catalysts. Although comparable catalytic performances have been observed for metal carbides in several types of reactions, precise control of reaction pathways on them remains a formidable challenge, partially due to strong adsorption of reactants or intermediates. In this study, we show that bimolecular dehydrogenation of methanol to methyl formate and H2 is kinetically favored on bare α-MoC catalysts, while monomolecular dehydrogenation to CO and H2 becomes the dominant pathway when α-MoC is decorated with crowding atomic Ni species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!