Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objectives of this study were to evaluate the net energy (NE) partition patterns of growing-finishing pigs at different growing stages and to develop the corresponding prediction models using nonlinear regression (NLR) and artificial neural networks (ANN). Twenty-four pigs with an initial body weight (BW) of ~30 kg were kept in metabolic cages and fed ad libitum and were moved into six respiration chambers in turns until ~90 kg. The NE partition patterns, i.e., NE for maintenance (NEm), NE retained as protein (NEp), and NE retained as lipid (NEl), were calculated based on indirect calorimetry and nitrogen balance techniques. The energy balance data collected through the animal trial was then randomly split into a training data set containing 75% of the samples and a testing data set containing the remaining 25% of the samples. The NLR models and a series of ANN models were established on the training data set to predict the metabolizable energy intake, NE intake, NEm, NEp, and NEl of pigs. The best-fitted ANN models were selected by 5-fold cross-validation in the training data set. The prediction performance of the best-fitted NLR and ANN models were compared on the testing data set. The results showed that the average NE intakes of pigs were 17.71, 23.25, 24.56, and 28.96 MJ/d in 30 to 45 kg, 45 to 60 kg, 60 to 75 kg, and 75 to 90 kg, respectively. The NEm and NEl (MJ/d) kept increasing as BW increased from 30 kg to 90 kg, while the NEp increased to its maximum value and then kept in a certain range of 4.64 to 4.88 MJ/d. The proportion of NEm for pigs at 30 to 90 kg stayed within the range of 42.0% to 48.6%, while the proportion of NEl kept increasing. For the prediction models built based on the animal trial, ANN models exhibited better performance than NLR models for all the target outputs. In conclusion, NE partition patterns changed in different growth stages of pigs, and ANN models are more flexible and powerful than NLR models in predicting the NE partition patterns of growing-finishing pigs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863033 | PMC |
http://dx.doi.org/10.1093/jas/skac405 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!