Genome editing has the potential to revolutionize many investigative and therapeutic strategies in biology and medicine. In the field of regenerative medicine, one of the leading applications of genome engineering technology is the generation of immune evasive pluripotent stem cell-derived somatic cells for transplantation. In particular, as more functional and therapeutically relevant human pluripotent stem cell-derived islets (SCDI) are produced in many labs and studied in clinical trials, there is keen interest in studying the immunogenicity of these cells and modulating allogeneic and autoimmune immune responses for therapeutic benefit. Significant experimental work has already suggested that elimination of Human Leukocytes Antigen (HLA) expression and overexpression of immunomodulatory genes can impact survival of a variety of pluripotent stem cell-derived somatic cell types. Limited work published to date focuses on stem cell-derived islets and work in a number of labs is ongoing. Rapid progress is occurring in the genome editing of human pluripotent stem cells and their progeny focused on evading destruction by the immune system in transplantation models, and while much research is still needed, there is no doubt the combined technologies of genome editing and stem cell therapy will profoundly impact transplantation medicine in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9762357 | PMC |
http://dx.doi.org/10.3389/ti.2022.10817 | DOI Listing |
Heliyon
January 2025
Nasal Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
Background: At present, the treatment for allergic rhinitis (AR) is only limited to symptom relief, and AR is not able be cured. It is important to find new therapeutic regimens for AR.
Objective: To explore the effect of adipose mesenchymal stem cell-derived exosomes (AMSC-exos) on AR in mice.
J Cosmet Dermatol
January 2025
Małopolska Centre of Biotechnology, Stem Cell Laboratory, Jagiellonian University, Kraków, Poland.
Objective: To present and analyze eight clinical cases illustrating the use of rose stem cell-derived exosomes (RSCEs) in treating various dermatological conditions and to review current literature on plant-derived exosomes in medicine and dermatology.
Background: RSCEs possess low cytotoxicity, high biocompatibility, and effective cellular uptake, making them promising agents for dermatological therapies. A literature review included in the introduction and discussion covers the broader role of plant-derived exosomes, highlighting their therapeutic potential in skin treatment.
Nat Cardiovasc Res
January 2025
Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education; National Key Laboratory of Frigid Zone Cardiovascular Diseases), Harbin Medical University, Harbin, China.
Targeting the cardiomyocyte cell cycle is a promising strategy for heart repair following injury. Here, we identify a cardiac-regeneration-associated PIWI-interacting RNA (CRAPIR) as a regulator of cardiomyocyte proliferation. Genetic ablation or antagomir-mediated knockdown of CRAPIR in mice impairs cardiomyocyte proliferation and reduces heart regenerative potential.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Amity Institute of Pharmacy, Amity University Haryana Chemistry Gurugram India.
Objectives: In the last two decades, scientists have gained a better understanding of several aspects of pituitary development. The signaling pathways that govern pituitary morphology and development have been identified, and the compensatory relationships among them are now known.
Aims: This paper aims to emphasize the wide variety of relationships between Pituitary Gland and Stem cells in hormone Production and disease prevention.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!