BINOL derived chiral phosphoric acids (CPAs) are a prominent class of catalysts in the field of asymmetric organocatalysis, capable of transforming a wide selection of substrates with high stereoselectivities. Exploiting the Brønsted acidic and basic dual functionality of CPAs, substrates with both a hydrogen bond acceptor and donor functionality are frequently used as the resulting bidentate binding two hydrogen bonds is expected to strongly confine the possible structural space and thus yield high stereoselectivities. Despite the huge success of CPAs and the popularity of a bidentate binding motif, experimental insights into their organization and origin of stereoinduction are scarce. Therefore, in this work the structural space and hydrogen bonding of CPAs and -(-hydroxyaryl) imines (19 CPA/imine combinations) was elucidated by low temperature NMR studies and corroborated by computations. The postulated bidentate binding of catalyst and substrate by two hydrogen bonds was experimentally validated by detection of -hydrogen bond scalar couplings. Counterintuitively, the resulting CPA/imine complexes showed a broad potential structural space and a strong preference towards the formation of [CPA/imine] dimers. Molecular dynamics simulations showed that in these dimers, the imines form each one hydrogen bond to two CPA molecules, effectively bridging them. By finetuning steric repulsion and noncovalent interactions, rigid and well-defined CPA/imine monomers could be obtained. NOESY studies corroborated by theoretical calculations revealed the structure of that complex, in which the imine is located in between the 3,3'-substituents of the catalyst and one site of the substrate is shielded by the catalyst, pinpointing the origin or stereoselectivity for downstream transformations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749107 | PMC |
http://dx.doi.org/10.1039/d2sc05076e | DOI Listing |
Sci Rep
December 2024
College of Geography and Environment, Shandong Normal University, Jinan, 250358, China.
The urban agglomeration represents the predominant form of new urbanisation, yet the evolution of its internal spatial structure exhibits pronounced spatial and temporal heterogeneity. This study concentrates on the Bohai Rim urban agglomeration, one of three major urban agglomerations in China, which has received comparatively limited research attention but has also undergone substantial urbanisation. Therefore, we reassessed and explored the spatial-temporal evolution of the spatial structure of urban expansion using Exploratory Spatiotemporal Data Analysis (ESTDA), and summarized the driving mechanisms using Geographically and Temporally Weighted Regression (GTWR).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Engineering Management, Hefei College of Finance and Economics, Hefei, 230601, People's Republic of China.
Underground coal excavation has caused a series of geological disasters and environmental problems, especially coal mining subsidence. Backfill-strip mining, which combines the advantages of strip mining and backfill mining, can reduce subsidence and improve the recovery rate of coal. Therefore, predicting the impact of backfill-strip mining on the surface environment and strata structure is essential for the better development of backfill-strip mining technology.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia.
Agriculture 4.0 technologies continue to see low adoption among small and medium-sized farmers, primarily because these solutions often fail to account for the specific challenges of rural areas. In this work, we propose and implement a design methodology to develop a Precision Agriculture solution aimed at assisting farmers in managing water stress in Hass avocado crops.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
TCS Research, Sahyadri Park 2, Rajiv Gandhi Infotech Park, Hinjewadi Phase 3, Pune 411057, India.
Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.
View Article and Find Full Text PDFSci Rep
December 2024
College of Sports, Beihua University, Jilin, 132000, China.
In order to eliminate the impact of camera viewpoint factors and human skeleton differences on the action similarity evaluation and to address the issue of human action similarity evaluation under different viewpoints, a method based on deep metric learning is proposed in this article. The method trains an automatic encoder-decoder deep neural network model by means of a homemade synthetic dataset, which maps the 2D human skeletal key point sequence samples extracted from motion videos into three potential low-dimensional dense spaces. Action feature vectors independent of camera viewpoint and human skeleton structure are extracted in the low-dimensional dense spaces, and motion similarity metrics are performed based on these features, thereby effectively eliminating the effects of camera viewpoint and human skeleton size differences on motion similarity evaluation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!