In this study, rod-like hydroxyapatite (HA) with uniform morphology and controllable particle size modified by doping with two different amino acids (alanine and threonine) was synthesized by a microwave hydrothermal method. The physical and chemical properties of the composites were tested by utilizing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), general thermogravimetric analysis (TG) and scanning electron microscopy (SEM). The SEM and XRD results show that the presence of amino acids (especially threonine) can significantly reduce the aspect ratio and crystallinity of hydroxyapatite. Pure hydroxyapatite and modified hydroxyapatite doped with two different proportions of amino acids were cultured with mouse osteoblasts (MC3T3-E1) for 1, 3 and 5 days, respectively, nanohydroxyapatite modified by threonine has better biocompatibility compared with pure hydroxyapatite. The amino acid-modified hydroxyapatite samples were co-cultured with osteosarcoma cells (MG63) for 1, 4 and 7 days, respectively, and showed better inhibitory effects on osteosarcoma cells. The nanohydroxyapatite doped with amino acids could be used as a potential drug that promotes bone repair and inhibits the growth of osteosarcoma cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756758PMC
http://dx.doi.org/10.1039/d2ra03784jDOI Listing

Publication Analysis

Top Keywords

amino acids
16
osteosarcoma cells
12
pure hydroxyapatite
8
amino
6
hydroxyapatite
6
synthesis characterization
4
characterization rod-like
4
rod-like amino
4
amino acids/nanohydroxyapatite
4
acids/nanohydroxyapatite composites
4

Similar Publications

Oil fields located in cold environments and deep-sea locations often face challenges with paraffin wax buildup in pipelines during long-distance crude oil transportation. Various strategies have been employed to address this issue, with chemical methods being the most effective and economical. However, traditional chemical inhibitors present problems due to their high toxicity and low biodegradability, leading to increased operational costs and environmental concerns.

View Article and Find Full Text PDF

Structural insights into the role of reduced cysteine residues in SOD1 amyloid filament formation.

Proc Natl Acad Sci U S A

February 2025

Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea.

The formation of superoxide dismutase 1 (SOD1) filaments has been implicated in amyotrophic lateral sclerosis (ALS). Although the disulfide bond formed between Cys57 and Cys146 in the active state has been well studied, the role of the reduced cysteine residues, Cys6 and Cys111, in SOD1 filament formation remains unclear. In this study, we investigated the role of reduced cysteine residues by determining and comparing cryoelectron microscopy (cryo-EM) structures of wild-type (WT) and C6A/C111A SOD1 filaments under thiol-based reducing and metal-depriving conditions, starting with protein samples possessing enzymatic activity.

View Article and Find Full Text PDF

Retinopathy with Vitamin E Deficiency (RVED) is a familial disease in the English Cocker Spaniel (ECS) dog breed. Ophthalmic abnormalities observed in RVED-affected ECS include lipofuscin granule deposition within the tapetal fundus and subsequent retinal degeneration resulting in visual deficits. Affected dogs may also exhibit neurological signs that include ataxia and hindlimb proprioceptive deficit.

View Article and Find Full Text PDF

Objectives: The usefulness of methotrexate-polyglutamates (MTX-PGs) concentration for management of rheumatoid arthritis has been debated. We aimed to clarify the association of MTX-PGs concentration with efficacy and safety in MTX-naïve patients initiating MTX in a prospective interventional clinical trial.

Methods: The MIRACLE trial enrolled 300 MTX-naïve patients.

View Article and Find Full Text PDF

Many applications of enzymes benefit from activity on structurally diverse substrates. Here, we sought to engineer the decarboxylative aldolase UstD to perform a challenging C-C bond forming reaction with ketone electrophiles. The parent enzyme had only low levels of activity, portending multiple rounds of directed evolution and a possibility that mutations may inadvertently increase the specificity of the enzyme for a single model screening substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!