Stomata are microscopic pores on epidermal cells of leaves and stems that regulate water loss and gas exchange between the plant and its environment. Constitutive photomorphogenic 1 (COP1) is an E3 ubiquitin ligase that is involved in plant growth and development and multiple abiotic stress responses by regulating the stability of various target proteins. However, little is known about how COP1 controls stomatal aperture and leaf temperature under various environmental conditions. Here, we show that COP1 participates in leaf temperature and stomatal closure regulation under normal and stress conditions in Arabidopsis. Leaf temperature of mutants was relatively lower than that of wild type (WT) under drought, salt, and heat stress and after abscisic acid (ABA), CaCl, and HO treatments. However, leaf temperature was generally higher in both WT and mutants after abiotic stress and chemical treatment than that of untreated WT and mutants. Stomatal aperture was wider in mutants than that in WT under all conditions tested, although the extent of stomatal closure varied between WT and mutants. Under dark conditions, leaf temperature was also lower in mutants than that in WT. Expression of the genes encoding ABA receptors, ABA biosynthesis proteins, positive regulators of stomatal closure and heat tolerance, and ABA-responsive proteins was lower in mutants that that in WT. In addition, expression of respiration-related genes was lower in mutants that that in WT. Taken together, the data provide evidence that mutations in lead to wider stomatal aperture and higher leaf temperature under normal and stress conditions, indicating that leaf temperature is highly correlated with stomatal aperture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763638PMC
http://dx.doi.org/10.1002/pld3.473DOI Listing

Publication Analysis

Top Keywords

leaf temperature
32
stomatal aperture
16
stomatal closure
12
lower mutants
12
leaf
8
temperature
8
abiotic stress
8
normal stress
8
stress conditions
8
mutants
8

Similar Publications

Embedment of Biosynthesised Silver Nanoparticles in PolyNIPAAm/Chitosan Hydrogel for Development of Proactive Smart Textiles.

Nanomaterials (Basel)

December 2024

Department of Textiles, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia.

A smart viscose fabric with temperature and pH responsiveness and proactive antibacterial and UV protection was developed. PNCS (poly-(N-isopropylakrylamide)/chitosan) hydrogel was used as the carrier of silver nanoparticles (Ag NPs), synthesised in an environmentally friendly manner using AgNO and a sumac leaf extract. PNCS hydrogel and Ag NPs were applied to the viscose fabric by either in situ synthesis of Ag NPs on the surface of viscose fibres previously modified with PNCS hydrogel, or by the direct immobilisation of Ag NPs by the dehydration/hydration of the PNCS hydrogel with the nanodispersion of Ag NPs in the sumac leaf extract and subsequent application to the viscose fibres.

View Article and Find Full Text PDF

Background: Calmodulin-binding transcription activator (CAMTA) proteins play significant roles in signal transduction, growth and development, as well as abiotic stress responses, in plants. Understanding their involvement in the low-temperature stress response of teak is vital for revealing cold resistance mechanisms.

Results: Through bioinformatics analysis, the CAMTA gene family in teak was examined, and six CAMTA genes were identified in teak.

View Article and Find Full Text PDF

No winter halt in below-ground wood growth of four angiosperm deciduous tree species.

Nat Ecol Evol

January 2025

PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium.

In the temperate zone, deciduous trees exhibit clear above-ground seasonality, marked by a halt in wood growth that represents the completion of wood formation in autumn and reactivation in spring. However, the growth seasonality of below-ground woody organs, such as coarse roots, has been largely overlooked. Here we use tree monitoring data and pot experiments involving saplings to examine the late-season xylem development of stem and coarse roots with leaf phenology in four common deciduous tree species in Western Europe.

View Article and Find Full Text PDF

Tip-to-base bark cross-sectional areas contribute to understanding the drivers of carbon allocation to bark and the functional roles of bark tissues.

New Phytol

January 2025

Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510, Mexico.

Along their lengths, stems experience different functional demands. Because bark and wood traits are usually studied at single points on stems, it remains unclear how carbon allocation changes along tip-to-base trajectories across species. We examined bark vs wood allocation by measuring cross-sectional areas of outer and inner bark (OB and IB), IB regions (secondary phloem, cortex, and phelloderm), and wood from stem tips to bases of 35 woody angiosperm species of diverse phylogenetic lineages, climates, fire regimes, and bark morphologies.

View Article and Find Full Text PDF

Cotton (Gossypium hirsutum L.), a crucial global fibre and oil seed crop faces diverse biotic and abiotic stresses. Among these, temperature stress strongly influences its growth, prompting adaptive physiological, biochemical, and molecular changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!