The main challenge for acidic water electrolysis is the lack of active and stable oxygen evolution catalysts based on abundant materials, which are globally scalable. Iridium oxide is the only material which is active and stable. However, Ir is extremely rare. While both active materials and stable materials exist, those that are active are usually not stable and . In this work, we present a new design strategy for activating stable materials originally deemed unsuitable due to a semiconducting nature and wide band gap energy. These stable semiconductors cannot change oxidation state under the relevant reaction conditions. Based on DFT calculations, we find that adding an n-type dopant facilitates oxygen binding on semiconductor surfaces. The binding is, however, strong and prevents further binding or desorption of oxygen. By combining both n-type and p-type dopants, the reactivity can be tuned so that oxygen can be adsorbed and desorbed under reaction conditions. The tuning results from the electrostatic interactions between the dopants as well as between the dopants and the binding site. This concept is experimentally verified on TiO by co-substituting with different pairs of n- and p-type dopants. Our findings suggest that the co-substitution approach can be used to activate stable materials, with no intrinsic oxygen evolution activity, to design new catalysts for acid water electrolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710220PMC
http://dx.doi.org/10.1039/d2sc04585kDOI Listing

Publication Analysis

Top Keywords

active stable
12
stable materials
12
water electrolysis
8
oxygen evolution
8
reaction conditions
8
p-type dopants
8
stable
7
dopants
5
oxygen
5
materials
5

Similar Publications

Surface Oxygen Vacancies on Copper-Doped Titanium Dioxide for Photocatalytic Nitrate-to-Ammonia Reduction.

J Am Chem Soc

January 2025

Research Center for Solar Energy Chemistry and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan.

Photocatalytic transformation of nitrate (NO) in wastewater into ammonia (NH) is a challenge in the detoxification and recycling of limited nitrogen resources. In particular, previously reported photocatalysts cannot promote the reaction using water as an electron donor. Herein, we report that copper-doped titanium dioxide (Cu-TiO) powders, prepared via the sol-gel method and subsequent calcination, promote NO-to-NH reduction in water.

View Article and Find Full Text PDF

Metabolic Characterization of Sarin, Cyclosarin, and Novichoks (A-230, A-232) in Human Liver Microsomes.

Chem Res Toxicol

January 2025

Collaborations Pharmaceuticals, Inc., 1730 Varsity Drivef, Suite 360, Raleigh, North Carolina 27606-5228, United States.

We have assessed the human liver microsomal (HLM) metabolism of the chemical warfare nerve agents' sarin (GB), cyclosarin (GF), and the Novichok agents A-230 and A-232. In HLM, GB showed drastically decreased stability ( = 1.4 h).

View Article and Find Full Text PDF

Cannabicyclol ((±)-CBL), a minor phytocannabinoid, is largely unexplored, with its biological activity previously undocumented. We studied its conversion from cannabichromene (CBC) using various acidic catalysts. Montmorillonite (K30) in chloroform at room temperature had the highest yield (60%) with minimal byproducts.

View Article and Find Full Text PDF

Isolated Tin Enhanced CO Coverage-Regulation on SnCu Alloy for Selective CO Electroreduction to C Products.

Small

January 2025

Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, P. R. China.

Electricity-powered C─C coupling of CO represents an attractive strategy for producing valuable commodity chemicals with renewable energy, but it is still challenging to gain high C selectivity at high current density. Here, a SnCu single-atom alloy (SAA) is reported with isolated Sn atom embedded into the Cu lattice, as efficient ectrocatalyst for CO reduction. The as prepared SnCu-SAA catalyst shows a maximal C Faradaic efficiency of 79.

View Article and Find Full Text PDF

Cellular senescence is characterized by a stable cell cycle arrest and a hypersecretory, proinflammatory phenotype in response to various stress stimuli. Traditionally, this state has been viewed as a tumor-suppressing mechanism that prevents the proliferation of damaged cells while activating the immune response for their clearance. However, senescence is increasingly recognized as a contributing factor to tumor progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!