Background: Increasing evidence indicates that L-dopa decarboxylase (DDC), which mediates aberrant amino acid metabolism, is significantly associated with tumor progression. However, the impacts of DDC are not elucidated clearly in clear cell renal cell carcinoma (ccRCC). This study aimed to evaluate DDC prognostic value and potential mechanisms for ccRCC patients.

Methods: Transcriptomic and proteomic expressions of and clinical data including 532 patients with ccRCC (The Cancer Genome Atlas RNA-seq data), 226 ccRCC samples (Gene Expression Omnibus), 101 ccRCC patients from the E-MTAB-1980 cohort, and 232 patients with ccRCC with proteogenomic data (Fudan University Shanghai Cancer Center) were downloaded and analyzed to investigate the prognostic implications of DDC expression. Cox regression analyses were implemented to explore the effect of DDC expression on the prognosis of pan-cancer. The "limma" package identified the differentially expressed genes (DEGs) between high DDC subgroups and low DDC groups. Functional enrichments were performed based DEGs between DDC subgroups. The differences of immune cell infiltrations and immune checkpoint genes between DDC subgroups were analyzed to identify potential influence on immune microenvironment.

Results: We found significantly decreased DDC expression in ccRCC tissues compared with normal tissues from multiple independent cohorts based on multi-omics data. We also found that DDC expression was correlated with tumor grades and stages.The following findings revealed that lower DDC expression levels significantly correlated with shorter overall survival (P <0.001) of patients with ccRCC. Moreover, we found that DDC expression significantly correlated with an immunosuppressive tumor microenvironment, higher intra-tumoral heterogeneity, elevated expression of immune checkpoint CD274, and possibly mediated malignant behaviors of ccRCC cells via the PI3k/Akt signaling pathway.

Conclusion: The present study is the first to our knowledge to indicate that decreased DDC expression is significantly associated with poor survival and an immune-suppressive tumor microenvironment in ccRCC. These findings suggest that DDC could serve as a biomarker for guiding molecular diagnosis and facilitating the development of novel individual therapeutic strategies for patients with advanced ccRCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9760914PMC
http://dx.doi.org/10.3389/fonc.2022.1079446DOI Listing

Publication Analysis

Top Keywords

ddc expression
20
ddc
13
ddc subgroups
12
l-dopa decarboxylase
8
decarboxylase ddc
8
clear cell
8
cell renal
8
renal cell
8
cell carcinoma
8
patients ccrcc
8

Similar Publications

The histamine pathway is a target to treat hepatic experimental erythropoietic protoporphyria.

Cell Mol Gastroenterol Hepatol

January 2025

Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA. Electronic address:

Background & Aims: Erythropoietic protoporphyria (EPP) is caused by mutations in ferrochelatase which inserts iron into protoporphyrin-IX (PP-IX) to generate heme. EPP is characterized by PP-IX accumulation, skin photosensitivity, cholestasis, and end-stage liver disease. Despite available drugs that address photosensitivity, treatment of EPP-related liver disease remains an unmet need.

View Article and Find Full Text PDF

Single-cell transcriptomic analysis reveals characteristic feature of macrophage reprogramming in liver Mallory-Denk bodies pathogenesis.

J Transl Med

January 2025

The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China.

Chronic liver diseases are highly linked with mitochondrial dysfunction and macrophage infiltration. Mallory-Denk bodies (MDBs) are protein aggregates associated with hepatic inflammation, and MDBs pathogenesis could be induced in mice by feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Here, we investigate the macrophage heterogeneity and the role of macrophage during MDBs pathogenesis on DDC-induced MDBs mouse model by single-nucleus RNA sequencing (snRNA-seq).

View Article and Find Full Text PDF

Hematopoietic stem cells must mitigate myriad stressors throughout their lifetime to ensure normal blood cell generation. Here, we uncover unfolded protein response stress sensor inositol-requiring enzyme-1α (IRE1α) signaling in hematopoietic stem and progenitor cells (HSPCs) as a safeguard against myeloid leukemogenesis. Activated in part by an NADPH oxidase-2 mechanism, IRE1α-induced X-box binding protein-1 (XBP1) mediated repression of pro-leukemogenic programs exemplified by the Wnt-β-catenin pathway.

View Article and Find Full Text PDF

Loss of hepatocyte Usp53 protects mice from a form of xenobiotic-induced liver injury.

Biochim Biophys Acta Mol Basis Dis

December 2024

The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Shanghai Key Laboratory of Birth Defect, Shanghai 201102, China. Electronic address:

Background: Ubiquitin-specific protease 53 (USP53) deficiency is associated with familial intrahepatic cholestasis in which serum gamma-glutamyl transferase (GGT) activity is relatively low. However, how USP53 deficiency contributes to cholestasis is obscure. No animal model has been reported.

View Article and Find Full Text PDF

Understanding cell fate regulation in the liver is necessary to advance cell therapies for hepatic disease. Liver progenitor cells (LPC) contribute to tissue regeneration after severe hepatic injury yet signals instructing progenitor cell dynamics and fate are largely unknown. The Tissue Inhibitor of Metalloproteinases, TIMP1 and TIMP3 control the sheddases ADAM10 and ADAM17, key for NOTCH activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!