Magnetic actuation holds promise for wirelessly controlling small, magnetic surgical tools and may enable the next generation of ultra minimally invasive surgical robotic systems. Precise torque and force exertion are required for safe surgical operations and accurate state control. Dipole field estimation models perform well far from electromagnets but yield large errors near coils. Thus, manipulations near coils suffer from severe (10×) field modeling errors. We experimentally quantify closed-loop magnetic agent control performance by using both a highly erroneous dipole model and a more accurate numerical magnetic model to estimate magnetic forces and torques for any given robot pose in 2D. We compare experimental measurements with estimation errors for the dipole model and our finite element analysis (FEA) based model of fields near coils. With five different paths designed for this study, we demonstrate that FEA-based magnetic field modeling reduces positioning root-mean-square (RMS) errors by 48% to 79% as compared with dipole models. Models demonstrate close agreement for magnetic field direction estimation, showing similar accuracy for orientation control. Such improved magnetic modelling is crucial for systems requiring robust estimates of magnetic forces for positioning agents, particularly in force-sensitive environments like surgical manipulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9762677PMC
http://dx.doi.org/10.1109/lra.2022.3191047DOI Listing

Publication Analysis

Top Keywords

magnetic
12
magnetic actuation
8
magnetic agent
8
numerical magnetic
8
magnetic model
8
field modeling
8
dipole model
8
magnetic forces
8
magnetic field
8
model
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!