Peroxisome proliferator-activated receptors (PPAR)-α, a ligand-activated transcription factor stands out to be a valuable protein target against cancer. Given that ligand binding is the crucial process for the activation of PPAR-α, fibrate class of synthetic compounds serves as potent agonist for the receptor. However, their serious side effects limit the long-term application in cancer. This emphasizes the dire need to identify new candidates that would exert desired activation by abrogating the adverse effects caused by synthetic agonists. Natural dietary products serve as an important source of drug discovery. Hence, the present study encompasses the investigation of the role of natural plant phenolic compounds: kaempferol, resveratrol, and quercetin and their 8708 derivatives by the means of computational pipeline comprising molecular docking and molecular dynamic (MD) simulation techniques. Docking calculations shortlisted potential candidates, namely 6-cinnamylchrysin (6-CC), resveratrol potassium-4-sulfate (RPS) and 6-[2-(3,4-Dihydroxyphenyl)-5-hydroxy-4-oxochromen-7-yl]oxyhexyl nitrate (DHOON), and derivatives of kaempferol, resveratrol, and quercetin, respectively. 6-CC, RPS, and DHOON manifested better affinities of - 32.83 kcal/mol (Ala333, Lys358, His440), - 27.22 kcal/mol (Tyr314, Met355), and - 30.18 kcal/mol (Ser280, Tyr314, Ala333), respectively, and were found to act as good stimulants for PPAR-α. Among these three compounds, 6-CC caused relatively least deviations and fluctuations analyzed through MD simulation which judiciously held responsible to attain most favorable interaction with PPAR-α. Followed by the binding free energy (ΔG) calculations using MM-GBSA confirmed the key role of 6-CC toward PPAR-α. The compound 6-CC also achieved high drug-likeness and pharmacokinetic properties. Thus, these findings stipulate new drug leads for PPAR-α receptor which abets a way to develop new anti-cancer drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11030-022-10587-2 | DOI Listing |
BMC Plant Biol
December 2024
Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
Background: Grape (Vitis vinifera L.) is one of the most important fruit products globally and has a high nutritional value with potent antioxidant and anti-cancer activities. In current years, phenylalanine application has been particularly noticed for enhancing the nutritional quality of horticultural crops.
View Article and Find Full Text PDFFood Chem
December 2024
Wine Science Programme, School of Chemical Sciences, The University of Auckland | Waipapa Taumata Rau, 23 Symonds Street, Auckland 1010, New Zealand. Electronic address:
A total of 116 New Zealand Pinot Noir wines from Central Otago (CO), Marlborough (MLB), and Martinborough (MTB) were analysed for colour, monomeric and total phenolics, antioxidant capacity, and tannins using colourimetric and HPLC methods. Correlations among chemical compositions and analytical techniques were examined. Additionally, a sensory study assessed wine colour and five mouthfeel attributes.
View Article and Find Full Text PDFFood Sci Nutr
September 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmacy Fırat University Elazığ Turkey.
The tendency toward natural herbal products has increased due to the antibiotic resistance developed by microorganisms and the severe side effects of antibiotics commonly used in infectious diseases worldwide. Although antimicrobial studies have been conducted with several species of the genus, this study is the first in the literature to be performed with L. subsp.
View Article and Find Full Text PDFImmun Inflamm Dis
October 2024
Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.
Background: Phytochemicals possess a wide range of anti-tumor properties, including the modulation of autophagy and regulation of programmed cell death. Autophagy is a critical process in cellular homeostasis and its dysregulation is associated with several pathological conditions, such as cancer, neurodegenerative diseases, and diabetes. In cancer, autophagy plays a dual role by either promoting tumor growth or suppressing it, depending on the cellular context.
View Article and Find Full Text PDFMini Rev Med Chem
September 2024
Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
Considerable advancements have been made in breast cancer therapeutics in the past few decades. However, the advent of chemo-resistance and adverse drug reactions coupled with tumor metastasis and recurrence posed a serious threat to combat this lethal disease. Novel anti-cancer agents, as well as new therapeutic strategies, are needed to complement conventional breast cancer therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!