SUMOylation is a dynamic posttranslational modification, that provides fine-tuning of protein function involved in the cellular response to stress, differentiation, and tissue development. In the adrenal cortex, an emblematic endocrine organ that mediates adaptation to physiological demands, the SUMOylation gradient is inversely correlated with the gradient of cellular differentiation raising important questions about its role in functional zonation and the response to stress. Considering that SUMO-specific protease 2 (SENP2), a deSUMOylating enzyme, is upregulated by Adrenocorticotropic Hormone (ACTH)/cAMP-dependent Protein Kinase (PKA) signalling within the zona fasciculata, we generated mice with adrenal-specific Senp2 loss to address these questions. Disruption of SENP2 activity in steroidogenic cells leads to specific hypoplasia of the zona fasciculata, a blunted reponse to ACTH and isolated glucocorticoid deficiency. Mechanistically, overSUMOylation resulting from SENP2 loss shifts the balance between ACTH/PKA and WNT/β-catenin signalling leading to repression of PKA activity and ectopic activation of β-catenin. At the cellular level, this blocks transdifferentiation of β-catenin-positive zona glomerulosa cells into fasciculata cells and sensitises them to premature apoptosis. Our findings indicate that the SUMO pathway is critical for adrenal homeostasis and stress responsiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772323PMC
http://dx.doi.org/10.1038/s41467-022-35526-5DOI Listing

Publication Analysis

Top Keywords

sumo-specific protease
8
isolated glucocorticoid
8
glucocorticoid deficiency
8
adrenal cortex
8
response stress
8
zona fasciculata
8
senp2 loss
8
loss sumo-specific
4
protease isolated
4
deficiency blocking
4

Similar Publications

SENP6-Mediated deSUMOylation of Nrf2 Exacerbates Neuronal Oxidative Stress Following Cerebral Ischemia and Reperfusion Injury.

Adv Sci (Weinh)

December 2024

Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Oxidative stress is believed to play critical pathophysiological roles in ischemic brain injury, and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is recognized as the most crucial endogenous antioxidant stress damage route. Some research have demonstrated that Nrf2 play critical roles in oxidative stress after ischemic stroke, but the underlying mechanism are not fully elucidated. This study reveals that Nrf2 is modified by SUMOylation and identifies Sentrin/SUMO-specific protease 6 (SENP6) as a negative regulator of Nrf2 SUMOylation.

View Article and Find Full Text PDF

Bone marrow stromal cells protect myeloma cells from ferroptosis through GPX4 deSUMOylation.

Cancer Lett

December 2024

Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China. Electronic address:

Bone marrow stromal cells (BMSCs) are vital for preventing chemotherapy induced apoptosis of multiple myeloma (MM), but roles and machinery in other forms of cell death have not been well elucidated. Here, using an in vitro BMSC-MM interacting model, we observed BMSCs protected MM cells from labile iron pool (LIP) and reactive oxygen species (ROS) triggered ferroptosis by elevating glutathione peroxidase 4 (GPX4). Mechanistically, direct interaction with BMSCs upregulated the expression of SUMO-specific protease 3 (SENP3) in MM cells through CD40/CD40L signaling pathway, and SENP3 de-conjugated SUMO2 at lysine 75 residue to stabilize GPX4 protein, thereby consuming ROS to obviate ferroptosis in MM cells from the Vk∗MYC mouse model, as well as in CD138B220 cells separated from the Cd40l;Prx1 mice (CD40-CKO) and Sumo2 knock out (SUMO2-KO) mice.

View Article and Find Full Text PDF

SENP3 mediates deSUMOylation of SIX1 to promote prostate cancer proliferation and migration.

Cell Mol Biol Lett

December 2024

Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.

Background: Sentrin/SUMO-specific protease 3 (SENP3) is essential to regulate protein stability and function in normal and cancer cells. Nevertheless, its role and action mechanisms in prostate cancer (PCa) remain elusive. Thus, clarification of SENP3's involvement and the SUMOylation process in PCa is pivotal for discovering potential targets and understanding SUMOylation dynamics.

View Article and Find Full Text PDF

SENP3 knockdown improves motor and cognitive impairments in the intranasal MPTP rodent model of Parkinson's disease.

Physiol Behav

January 2025

Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil; Postgraduate Program in Neuroscience, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil. Electronic address:

Article Synopsis
  • Several mechanisms of Parkinson's disease (PD) are unclear, and current treatments are ineffective; however, a process called SUMOylation might offer new benefits.
  • Researchers knocked down a specific protein (SENP3) in a rodent model, increasing SUMO-2/3 conjugation, and observed improvements in cognitive and motor functions after MPTP exposure.
  • The study suggests that enhancing SUMO-2/3 conjugation could be a promising therapeutic approach to address the cognitive and motor difficulties associated with PD.
View Article and Find Full Text PDF

Hippocampal SENP3 mediates chronic stress-induced depression-like behaviors by impairing the CREB-BDNF signaling.

Neuropharmacology

January 2025

Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China. Electronic address:

Impaired signaling between cyclic adenosine monophosphate response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus is generally considered to be the cause of depression. The mechanisms underlying the impairment of CREB-BDNF signaling under stress conditions are largely unclear. Small ubiquitin-like modifier (SUMO) specific peptidase 3 (SENP3) is a molecule that can regulate SUMOylation of target proteins related to synaptic plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!