Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Corbicula fluminea distillate as an important industrial by-product of C. fluminea during steaming process is rich in amino acids, proteins and polysaccharides, showing potential hepatoprotective effect. In this study, a polysaccharide (CFDP) was obtained from C. fluminea distillate by three-phase partitioning combined with (NH)SO precipitation at a saturation of 60 %. The structural characteristics, antioxidant activity in vitro, and hepatoprotection against mice CCl-induced acute liver damage of CFDP were studied. Results demonstrated that CFDP was a water-soluble homogenous polysaccharide predominantly comprising glucose (>98 %), with a weight-average molecular weight of 1.4 × 10 Da, and exhibiting potent antioxidant benefits in vitro. CFDP had a backbone of (1 → 4)-α-d-glucopyranosyl (Glcp) and a small amount of (1 → 4, 6)-α-D-Glcp. The branch formed at C-6 comprised by (1→)-α-D-Glcp and (1→)-α-D-N-acetylglucosamine. CFDP possessed excellent hepatoprotective activity against acute liver damage caused by CCl in mice, mainly by ameliorating weight reduction and organ injures, alleviating hepatic function and serum lipid metabolism, suppressing oxidative stress and inflammatory responses, as directly verified by histopathological examination. Moreover, CFDP improved gut microbiota by up-regulating the relative abundance of total bacteria and probiotics such as Firmicutes, Bacteroidete, Rumminococcaceae, Lactobacillaceae, accompanied by promoting short chain fatty acid production. Therefore, our findings indicated that CFDP can be developed as a healthy food supplement for the prevention of chemical livery injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.12.138 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!