A dated phylogenetic hypothesis on the evolutionary history of the extant taxa of the Western Palearctic lizards Anguis and Pseudopus is revised using genome-wide nuclear DNA and mitogenomes. We found overall concordance between nuclear and mitochondrial DNA phylogenies, with one significant exception - the Apennine A. veronensis. In mitochondrial DNA, this species forms a common clade with the earliest diverging lineage, the southern Balkan endemic A. cephallonica, while it clusters together with A. fragilis in nuclear DNA. The nuclear phylogeny conforms to the morphology, which is relatively similar between A. veronensis and A. fragilis. The most plausible explanation for the mitonuclear discordance is ancient mitochondrial capture from the Balkan ancestor of A. cephallonica to the Apennine population of the A. fragilis-veronensis ancestor. We hypothesize that this capture occurred only in a geographically restricted population. The dating of this presumed mitochondrial introgression and capture coincides with the Messinian event, when the Balkan and Apennine Peninsulas were presumably largely connected. The dated nuclear phylogenomic reconstruction estimated the divergence of A. cephallonica around 12 Mya, while the sister clade representing the A. fragilis species complex consisting of the sister species A. fragilis-A. veronensis and A. colchica-A. graeca further diversified around 7 Mya. The depth of nuclear divergence among the evolutionary lineages of Pseudopus (0.5-1.2 Mya) supports their subspecies status.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2022.107674DOI Listing

Publication Analysis

Top Keywords

anguis pseudopus
8
mitochondrial capture
8
messinian event
8
nuclear dna
8
mitochondrial dna
8
nuclear
6
mitochondrial
5
phylogenomics anguis
4
pseudopus squamata
4
squamata anguidae
4

Similar Publications

Herein, we revise the material of the extinct taxon Pseudopus pannonicus from Central Europe, the largest known anguid lizard and iconic member of herpetofaunas from the Upper Cenozoic of Europe. The geographical position of Polgárdi 2, the type locality of P. pannonicus, as well as several other closely located important localities make Central Europe a valuable area of high interest for studies regarding European Cenozoic palaeoherpetological assemblages.

View Article and Find Full Text PDF

A dated phylogenetic hypothesis on the evolutionary history of the extant taxa of the Western Palearctic lizards Anguis and Pseudopus is revised using genome-wide nuclear DNA and mitogenomes. We found overall concordance between nuclear and mitochondrial DNA phylogenies, with one significant exception - the Apennine A. veronensis.

View Article and Find Full Text PDF

We present a detailed anatomy of the pectoral girdles, pelvic girdles, and hindlimbs of adult and juvenile specimens of Pseudopus apodus (Pallas, 1775). We compared the individual bones of the appendicular skeleton of P. apodus with those of Anguis fragilis and species of Ophisaurus living in North America, North Africa, and Southeast Asia.

View Article and Find Full Text PDF

Background: In vertebrates, the skull evolves from a complex network of dermal bones and cartilage-the latter forming the pharyngeal apparatus and the chondrocranium. Squamates are particularly important in this regard as they maintain at least part of the chondrocranium throughout their whole ontogeny until adulthood. Anguid lizards represent a unique group of squamates, which contains limbed and limbless forms and show conspicuous variation of the adult skull.

View Article and Find Full Text PDF

The article reports on the first detailed vertebral and rib morphology of anguine taxon Pseudopus apodus using micro-computed tomography. A comparison shows significant morphological differences of vertebrae of Pseudopus relative to those of Anguis and Ophisaurus. Usually, there are 55 presacral vertebrae, two sacral, and 95-97 caudal vertebrae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!