Sedimentary spatial variation, source identification and ecological risk assessment of parent, nitrated and oxygenated polycyclic aromatic hydrocarbons in a large shallow lake in China.

Sci Total Environ

School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, PR China. Electronic address:

Published: March 2023

Because polycyclic aromatic compounds (PACs) are persistent, universal, and toxic pollutants, understanding the potential source and ecological risk thereof in lakes is critical to the safety of the aquatic environment. Here, a total of 25 sedimentary samples were collected from Lake Taihu, China, in 2018. The total concentrations of 16 parent polycyclic aromatic hydrocarbons (PAHs), 15 nitrated PAHs (NPAHs), nine oxygenated PAHs (OPAHs), and five hydroxy-PAHs (OH-PAHs) ranged from 294 to 1243, 3.0 to 54.5, 188 to 1897, and 8.3 to 51.7 ng/g dw, with the most abundant compounds being fluoranthene, 1,8-dinitropyrene, 6H-Benzo[cd]pyren-6-one, and 2-phenylphenol, respectively. The spatial distribution of PACs in sediments of Lake Taihu showed elevated concentrations from east to west due to economic development and transportation. The positive correlations between most paired PAHs indicate that these compounds likely originated from similar sources. The total organic carbon and organic matter contents affected the distribution characteristics of PACs in sediments. Diagnostic ratios, principal component analysis-multiple linear regression (PCA-MLR), and positive matrix factorization (PMF) were integrated to identify the sources. PACs had various sources including combustion, petroleum leakage, traffic emissions, hydroxyl metabolism, and other oxidation pathways in sediments of Lake Taihu. The PMF (R > 0.9824), which showed better optimal performance compared with PCA-MLR (R > 0.9564) for PAHs and derivatives, is recommended as the preferred model for quantitative source analysis. Ecological risk assessment showed that the risk quotient values of OPAHs in sediments were much higher than those of other PACs and should be given special attention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.160926DOI Listing

Publication Analysis

Top Keywords

ecological risk
12
polycyclic aromatic
12
lake taihu
12
risk assessment
8
aromatic hydrocarbons
8
pacs sediments
8
sediments lake
8
pacs
5
pahs
5
sedimentary spatial
4

Similar Publications

Background And Objectives: Microplastics, which originate from the breakdown of larger plastic fragments or are intentionally produced for industrial applications, pose significant human and ecological risks through inhalation, ingestion, and dermal contact. Our study examined the release of microplastics during the preparation of homemade saline solutions, specifically when tearing open powder packets and mixing the powder with water.

Methods: We used commercially available polypropylene nasal irrigation bottles from the Korean market and collected six samples of nasal irrigation fluids.

View Article and Find Full Text PDF

Indigenous chickens are an important Farm Animal Genetic Resource (FAnGR) in South Africa as they alleviate poverty and are a source of protein. Climate change and market demand for high-performing exotic breeds threaten and undermine locally adapted village chickens. The current study explored the risk status and signatures of adaptation of village-based indigenous chickens from two provinces and mapped their environmental suitability across the country.

View Article and Find Full Text PDF

Coupling effect of cyanobacterial blooms with migration and transformation of typical pollutants in lake or reservoir: enhanced or decreased?

Environ Res

December 2024

State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

Eutrophication of lake and reservoir caused by cyanobacterial harmful algal blooms (cyanoHABs) become a global ecological problem because of massive destruction of ecosystems, which have attracted attentions widely. In addition to the production of cyanotoxins by certain bloom-forming species, there may also be direct or indirect interactions between cyanobacteria blooms and various pollutants in lakes or reservoirs. Based on bibliometrics, 19110 papers in Web of Science (WOS) and 2998 papers in the China National Knowledge Infrastructure (CNKI) on eutrophication and cyanobacterial blooms in lakes and reservoirs were analyzed, which showed that research on this topic has been ongoing for nearly 80 years with a gradual increase in its popularity.

View Article and Find Full Text PDF

Purpose: Drug use during adolescence can have lasting health consequences, and understanding the factors that contribute to drug use is essential for effective prevention. This study aimed to identify the factors influencing habitual drug use among South Korean adolescents. It employed Bronfenbrenner's ecological model to examine personal, familial, school-related, and social factors.

View Article and Find Full Text PDF

Fluorinated liquid crystal monomers (FLCMs) are widely employed in liquid crystal display (LCD) panels. As emerging environmental contaminants with persistent, bioaccumulative, and toxic properties, FLCMs were proven to accumulate in liver, raising great concern regarding potential hepatotoxicity. 1-Ethoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl) benzene (EDPrB), as one representative FLCM, was chosen to investigate the hepatotoxicity in adult zebrafish (Danio rerio) at environmentally relevant concentrations (1, 10, and 100 μg/L) with long-term exposure (21 days).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!