In recent years, surgical procedures for hip prostheses have increased. These implants are manufactured with materials with high stiffness compared to the bone, causing bone loss or aseptic loosening. This research proposes an alternative structural composite consisting of 3D-printing polylactic acid layers and carbon fiber laminates (PLA/CFRC) with potential application in prosthetic implants. Fourier-transform infrared spectroscopy (FTIR) achieved to characterize starting materials and structural composites revealed secondary chemical interactions between the carbonyl group of PLA with the hydroxyl group of epoxy resin from CFRC. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results show both components (PLA and CFRC) influence the structural composite's thermal behavior, observed in the temperatures of degradation, glass transition, and melting. Furthermore, the composite reached cell viability above 80%, a tensile modulus of 19.29 ± 0.48 GPa and tensile strength of 238.91 ± 25.95 MPa, with mechanical properties very similar to the bone. The results of this study demonstrated that the proposed PLA/CFRC composite can be used as candidate base material for the manufacturing of a hip femoral stem prostheses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2022.105632DOI Listing

Publication Analysis

Top Keywords

structural composite
8
fiber laminates
8
laminates pla/cfrc
8
femoral stem
8
structural
4
composite based
4
based printing
4
printing polylactic
4
polylactic acid/carbon
4
acid/carbon fiber
4

Similar Publications

Developing a reliable procedure for the growth of III-V nanowires (NW) on silicon (Si) substrates remains a significant challenge, as current methods rely on trial-and-error approaches with varying interpretations of critical process steps such as sample preparation, Au-Si alloy formation in the growth reactor, and nanowire alignment. Addressing these challenges is essential for enabling high-performance electronic and optoelectronic devices that combine the superior properties of III-V NW semiconductors with the well-established Si-based technology. Combining conventional scalable growth methods, such as Metalorganic Chemical Vapor Deposition (MOCVD) with in situ characterization using Environmental Transmission Electron Microscopy (ETEM-MOCVD) enables a deeper understanding of the growth dynamics, if that knowledge is transferable to the scalable processes.

View Article and Find Full Text PDF

Migratory birds benefit from urban environments in a highly anthropized Neotropical region.

PLoS One

January 2025

Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México.

Land use change from wildlands to urban and productive environments can dramatically transform ecosystem structure and processes. Despite their structural and functional differences from wildlands, human-modified environments offer unique habitat elements for wildlife. In this study, we examined how migratory birds use urban, productive, and wildland environments of a highly anthropized region of Western Mexico known as "El Bajío".

View Article and Find Full Text PDF

Analyses of the genetic distance and composition of inbred lines are a prerequisite for parental selection and to exploit heterosis in plant breeding programs. The study aimed to assess genetic diversity and population structure of a maize germplasm panel comprising 182 founder lines and 866 derived inbred lines using Single Nucleotide Polymorphism (SNP) markers to identify genetically unique lines for hybrid breeding. The founder lines were genotyped with 1201 SNPs, and the derived lines with 1484 SNPs.

View Article and Find Full Text PDF

Bauxite mining has been caused severe changes in the natural ecosystems of the Amazon, but the restoration of these areas is mandatory by federal law in Brazil. The recolonization of fauna is crucial to establishing the ecological functions of recovering forests, and the small nonflying mammals can stand out in this process. Assessing taxonomic and functional diversity parameters, we demonstrated that in the early stages of forest recovery post-bauxite mining, between 6 and 11 years, it is possible to restore approximately 45% of the richness of small non-flying mammal species from the original habitats, that in this case were altered Primary Forests.

View Article and Find Full Text PDF

A tough soft-hard interface in the human knee joint driven by multiscale toughening mechanisms.

Proc Natl Acad Sci U S A

January 2025

Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.

Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!