Sweetness is a vital taste to which humans are innately attracted. Given the increasing prevalence of type-2 diabetes, it is highly relevant to build computational models to predict the sweetness of small molecules. Such models are valuable for identifying sweeteners with low calorific value. We present regression-based machine learning and deep learning algorithms for predicting sweetness. Toward this goal, we manually curated the most extensive dataset of 671 sweet molecules with known experimental sweetness values ranging from 0.2 to 22,500,000. Gradient Boost and Random Forest Regressors emerged as the best models for predicting the sweetness of molecules with a correlation coefficient of 0.94 and 0.92, respectively. Our models show state-of-the-art performance when compared with previously published studies. Besides making our dataset (SweetpredDB) available, we also present a user-friendly web server to return the predicted sweetness for small molecules, Sweetpred (https://cosylab.iiitd.edu.in/sweetpred).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2022.106441 | DOI Listing |
J Am Med Inform Assoc
January 2025
Kennewick, WA 99338, United States.
Objective: This study evaluates the utility of word embeddings, generated by large language models (LLMs), for medical diagnosis by comparing the semantic proximity of symptoms to their eponymic disease embedding ("eponymic condition") and the mean of all symptom embeddings associated with a disease ("ensemble mean").
Materials And Methods: Symptom data for 5 diagnostically challenging pediatric diseases-CHARGE syndrome, Cowden disease, POEMS syndrome, Rheumatic fever, and Tuberous sclerosis-were collected from PubMed. Using the Ada-002 embedding model, disease names and symptoms were translated into vector representations in a high-dimensional space.
Bioinformatics
January 2025
Institute for Computational Systems Biology, Universität Hamburg, Hamburg, 22761, Germany.
Motivation: Transcription factors (TFs) are DNA-binding proteins that regulate gene expression. Traditional methods predict a protein as a TF if the protein contains any DNA-binding domains (DBDs) of known TFs. However, this approach fails to identify a novel TF that does not contain any known DBDs.
View Article and Find Full Text PDFJMIR Perioper Med
January 2025
Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States.
Background: Postoperative delirium (POD) is a common complication after major surgery and is associated with poor outcomes in older adults. Early identification of patients at high risk of POD can enable targeted prevention efforts. However, existing POD prediction models require inpatient data collected during the hospital stay, which delays predictions and limits scalability.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania.
Importance: Recently, the US Food and Drug Administration gave premarketing approval to an algorithm based on its purported ability to identify individuals at genetic risk for opioid use disorder (OUD). However, the clinical utility of the candidate genetic variants included in the algorithm has not been independently demonstrated.
Objective: To assess the utility of 15 genetic variants from an algorithm intended to predict OUD risk.
Transl Vis Sci Technol
January 2025
Institute of the Electrical and Biomedical Engineering, UMIT TIROL - Private University for Health Sciences and Health Technology, Hall in Tyrol, Austria.
Purpose: To extract conjunctival bulbar redness from standardized high-resolution ocular surface photographs of a novel imaging system by implementing an image analysis pipeline.
Methods: Data from two trials (healthy; outgoing ophthalmic clinic) were collected, processed, and used to train a machine learning model for ocular surface segmentation. Various regions of interest were defined to globally and locally extract a redness biomarker based on color intensity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!