Hypothesis: The high binding affinity of iron(oxyhydr)oxides for phosphate has recently been used in medicine to treat hyperphosphatemia, an abnormally elevated phosphate concentration in the blood. For iron(oxyhydr)oxide nanoparticles, the composition of the organic shell has a more significant influence on their interaction with phosphate than is often assumed. This study shows different mechanisms in phosphate binding, using the example of two similar new phosphate-binding agents.
Experiments: We characterized the phosphate-binding behavior of two iron(oxyhydr)oxide-based nanomaterials with similar composition and particle properties and investigated their binding mechanisms by spectroscopic methods.
Findings: For the often prescribed Velphoro, we demonstrated a phosphate binding capacity of>210 mg/g. A similar active ingredient named C-PAM binds over 573 mg/g. Spectroscopic measurements highlighted differences in the binding mechanism. While Velphoro binds phosphate via surface complexation independent of pH and adsorbent concentration, C-PAM shows a strong concentration dependence. At low concentrations, phosphate is bound via complexation reactions. The iron(oxyhydr)oxide structure was dissolved at higher phosphate concentrations and formed various iron phosphate species. The substances behave differently upon interaction with phosphate, although being very similar in composition and crystal structure. Thus, we demonstrated a crucial influence of the ligands in the shell on the binding mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.12.035 | DOI Listing |
Cell Mol Biol Lett
January 2025
Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg.
Background: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors.
View Article and Find Full Text PDFAAPS J
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 160 Hayes Rd, Buffalo, New York, 14214, USA.
The study quantitatively analyzes and compares the pharmacokinetics (PK) of methylprednisolone (MPL) in humans upon administration of various dosage forms. The PK parameters and profiles of MPL in healthy subjects were collected from 22 literature sources. A minimal physiologically based pharmacokinetic (mPBPK) model consisting of blood and two tissue (lumped liver and kidney, remainder) compartments with nonlinear tissue partitioning was applied to describe MPL disposition.
View Article and Find Full Text PDFJ Hum Hypertens
January 2025
Geriatrics Center & National Clinical Research Center for Aging and Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, China.
Previous studies suggest that ferroptosis is involved in cardiovascular diseases. The aim of the present study is to investigate the causal relationship between angiotensin II type 1 and type 2 receptors (ATR) activities and mitochondrial dysfunction in induction of cardiomyocyte ferroptosis. Human AC16 cardiomyocytes were first pre-treated with an ATR blockers, before stimulated with angiotensin II (Ang II) for 24 h.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
Glomerular endothelial cells (GECs) are pivotal in developing glomerular sclerosis disorders. The advancement of focal segmental glomerulosclerosis (FSGS) is intimately tied to disruptions in lipid metabolism. Sphingosine-1-phosphate (S1P), a molecule transported by high-density lipoproteins (HDL), exhibits protective effects on vascular endothelial cells by upregulating phosphorylated endothelial nitric oxide synthase (p-eNOS) and enhancing nitric oxide (NO) production.
View Article and Find Full Text PDFActa Histochem
January 2025
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
In recent years, a great interest has been focused on the prebiotic origin of nucleic acids and life on Earth. An attractive idea is that life was initially based on an autocatalytic and autoreplicative RNA (the RNA-world). RNA duplexes are right-handed helical chains with antiparallel orientation, but the rationale for these features is not yet known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!