A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Programmable DNA biocomputing circuits for rapid and intelligent screening of SARS-CoV-2 variants. | LitMetric

Programmable DNA biocomputing circuits for rapid and intelligent screening of SARS-CoV-2 variants.

Biosens Bioelectron

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China. Electronic address:

Published: March 2023

The frequent emergence of SARS-CoV-2 variants increased viral transmissibility and reduced protection afforded by vaccines. The rapid, multichannel, and intelligent screening of variants is critical to minimizing community transmissions. DNA molecular logic gates have attracted wide attention in recent years due to the powerful information processing capabilities and molecular data biocomputing functions. In this work, some molecular switches (MSs) were connected with each other to implement arbitrary binary functions by emulating the threshold switching of MOS transistors and the decision tree model. Using specific sequences of different SARS-CoV-2 variants as inputs, the MSs net was used to build several molecular biocomputing circuits, including NOT, AND, OR, INHIBIT, XOR, half adder, half subtractor, full adder, and full subtractor. Four fluorophores (FAM, Cy3, ROX, and Cy5) were employed in the logic systems to realize the multichannel monitoring of the logic operation results. The logic response is fast and can be finished with 10 min, which facilitates the rapid wide-population screening for SARS-CoV-2 variants. Importantly, the logic results can be directly observed by the naked eye under a portable UV lamp, thus providing a simple and intelligent method to enable high-frequency point-of-care diagnostics, particularly in low-resource communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9759469PMC
http://dx.doi.org/10.1016/j.bios.2022.115025DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 variants
16
biocomputing circuits
8
intelligent screening
8
screening sars-cov-2
8
variants
5
logic
5
programmable dna
4
dna biocomputing
4
circuits rapid
4
rapid intelligent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!