Maltodextrin metabolism is thought to be involved in both starch initiation and degradation. In this study, potato tuber discs from transgenic lines containing antisense constructs against the plastidial and cytosolic isoforms of α-glucan phosphorylase and phosphoglucomutase were used to evaluate their influences on the conversion of externally supplied glucose-1-phosphate into soluble maltodextrins, as compared to wild-type potato tubers (Solanum tuberosum L. cv. Desiree). Relative maltodextrin amounts analyzed by capillary electrophoresis with laser-induced fluorescence revealed that tuber discs could immediately uptake glucose-1-phosphate and use it to produce maltooligosaccharides with a degree of polymerization of up to 30, as opposed to tubers repressing the plastidial glucan phosphorylase. The results presented here support previous indications that a specific transporter for glucose-1-phosphate may exist in both the plant cells and the plastidial membranes, thereby allowing a glucose-6-phosphate-independent transport. Furthermore, it confirms that the plastidial glucan phosphorylase is responsible for producing longer maltooligosaccharides in the plastids by catalyzing a glucosyl polymerization reaction when glucose-1-phosphate is available. All these findings contribute to a better understanding of the role of the plastidial phosphorylase as a key enzyme directly involved in the synthesis and degradation of glucans and their implication on starch metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10109208 | PMC |
http://dx.doi.org/10.1093/pcp/pcac174 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!