Functional effectiveness of erythrocytes depends on their high deformability that allows them to pass through narrow tissue capillaries. The erythrocytes can deform easily due to discoid shape provided by the stabilization of an optimal cell volume at a given cell surface area. We used mathematical simulation to study the role of transport Na/K-ATPase and transmembrane Na+ and K+ gradients in human erythrocyte volume stabilization at non-selective increase in cell membrane permeability to cations. The model included Na/K-ATPase activated by intracellular Na+, Na+ and K+ transmembrane gradients, and took into account contribution of glycolytic metabolites and adenine nucleotides to cytoplasm osmotic pressure. We found that this model provides the best stabilization of the erythrocyte volume at non-selective increase in the permeability of the cell membrane, which can be caused by an oxidation of the membrane components or mechanical stress during circulation. The volume of the erythrocyte deviates from the optimal value by no more than 10% with a change in the non-selective permeability of the cell membrane to cations from 50 to 200% of the normal value. If only one transmembrane ion gradient is present (Na+), the cell loses the ability to stabilize volume and even small changes in membrane permeability cause dramatic changes in the cell volume. Our results reveal that the presence of two oppositely directed transmembrane ion gradients is fundamentally important for robust stabilization of cellular volume in human erythrocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9770400 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272675 | PLOS |
Sci Adv
January 2025
Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) ion channels are members of the cyclic nucleotide-binding family and are crucial for regulating cellular automaticity in many excitable cells. HCN channel activation contributes to pain perception, and propofol, a widely used anesthetic, acts as an analgesic by inhibiting the voltage-dependent activity of HCN channels. However, the molecular determinants of propofol action on HCN channels remain unknown.
View Article and Find Full Text PDFNat Commun
January 2025
School of Infection and Immunity, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
For the protozoan parasite Leishmania, completion of its life cycle requires sequential adaptation of cellular physiology and nutrient scavenging mechanisms to the different environments of a sand fly alimentary tract and the acidic mammalian host cell phagolysosome. Transmembrane transporters are the gatekeepers of intracellular environments, controlling the flux of solutes and ions across membranes. To discover which transporters are vital for survival as intracellular amastigote forms, we carried out a systematic loss-of-function screen of the L.
View Article and Find Full Text PDFNat Commun
January 2025
National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
XPR1 is the sole protein known to transport inorganic phosphate (Pi) out of cells, a function conserved across species from yeast to mammals. Human XPR1 variants lead to cerebral calcium-phosphate deposition and primary familial brain calcification (PFBC), a hereditary neurodegenerative disorder. Here, we present the cryo-EM structure of human XPR1 in both its Pi-unbound and various Pi-bound states.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China.
TMEM16A, a key calcium-activated chloride channel, is crucial for many physiological and pathological processes such as cancer, hypertension, and osteoporosis, etc. However, the regulatory mechanism of TMEM16A is poorly understood, limiting the discovery of effective modulators. Here, we unveil an allosteric gating mechanism by presenting a high-resolution cryo-EM structure of TMEM16A in complex with a channel inhibitor that we identified, Tamsulosin, which is resolved at 2.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.
While membrane proteins such as ion channels continuously turn over and require replacement, the mechanisms of specificity of efficient channel delivery to appropriate membrane subdomains remain poorly understood. GJA1-20k is a truncated Connexin43 (Cx43) isoform arising from translation initiating at an internal start codon within the same parent GJA1 mRNA and is requisite for full-length Cx43 trafficking to cell borders. GJA1-20k does not have a full transmembrane domain, and it is not known how GJA1-20k enables forward delivery of Cx43 hemichannels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!