A novel hydrophilic As(V) ion-imprinted cryogel (IIC) was green prepared by cryogelation in aqueous environment which was coincident with the adsorption condition and can improve the specific recognition performance. The methacrylamido propyl trimethyl ammonium chloride (MPTAC) was selected as the functional monomer and the saturated adsorption capacity of the prepared IIC and NIC were 55.0 mg/g and 29.4 mg/g, and with high imprinting factor of 1.87. Additionally, the prepared IIC showed admirable reusability and high selectivity, and the recovery was in the range 81.2-97.9% with RSD range of 1.9-4.3%, which was similar to the value obtained by hydride generation atomic absorption spectrometry. IIC can be used as solid material for colorimetric detection at the ultraviolet wavelength of 858 nm without color interference of material matrix, in the range 5-200 μg/L (R = 0.990) with a detection limit of 0.970 µg/L. Obviously, this synthetic strategy provides a simple, efficient, and green method for the preparation of water-compatible ion-imprinted polymers providing selective separation and detection of trace As(V) in real complex samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-022-05564-3 | DOI Listing |
Mikrochim Acta
March 2023
School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China.
Mikrochim Acta
December 2022
School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China.
A novel hydrophilic As(V) ion-imprinted cryogel (IIC) was green prepared by cryogelation in aqueous environment which was coincident with the adsorption condition and can improve the specific recognition performance. The methacrylamido propyl trimethyl ammonium chloride (MPTAC) was selected as the functional monomer and the saturated adsorption capacity of the prepared IIC and NIC were 55.0 mg/g and 29.
View Article and Find Full Text PDFInt J Biol Macromol
December 2020
Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania. Electronic address:
Combining ion-imprinting technology with pH-dependent adsorptive features of acid- or salt-activated zeolites brings up the opportunity to develop composite polymer materials with 'desired' sorption properties and performances. In this respect, we present here Co-imprinted composite cryo-beads with switching on/off selectivity towards the template ions, engineered by selecting the appropriate zeolite-treatment conditions and/or controlling the initial sorption pH values. Co chelating efficiency of all cryo-beads was investigated either at pH 4 or 6 depending on zeolite conditioning strategy.
View Article and Find Full Text PDFJ Hazard Mater
January 2020
"Petru Poni" Institute of Macromolecular Chemistry, "Mihai Dima" Department of Functional Polymers, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania. Electronic address:
Copper, nickel, zinc, chromium, and iron ions are the prevailing contaminants in the aqueous effluents resulting from the photo-etching industry. In this context, we investigate here the metal ion sorption performance of an ion-imprinted cryogel (IIC), consisting of low-cost materials coming from renewable resources, towards multi-component metal ion solutions. The IIC sorbent, which is based on a chitosan matrix embedding a natural zeolite, was synthesized using a straightforward strategy by coupling copper-imprinting and unidirectional ice-templating methods.
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
June 2016
c Department of Chemistry Technology , Vocational School of Gerede, Bolu , Turkey.
Iron chelation therapy can be used for the selective removal of Fe(3+) ions from spiked human plasma by ion imprinting. N-Methacryloyl-(L)-glutamic acid (MAGA) was chosen as the chelating monomer. In the first step, MAGA was complexed with the Fe(3+) ions to prepare the precomplex, and then the ion-imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-glutamic acid) [PHEMAGA-Fe(3+)] cryogel column was prepared by cryo-polymerization under a semi-frozen temperature of - 12°C for 24 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!