Memory impairment occurs in over a third of patients after symptomatic stroke. Memory deficits rarely occur in isolation but are an important component of the poststroke cognitive syndrome because of the strong relationship with the risk of poststroke dementia. In this review, we summarize available data on impairment of episodic memory, with a particular emphasis on the natural history of memory impairment after stroke and the factors influencing trajectory informed by an updated systematic review. We next discuss the pathophysiology of memory impairment and mechanisms of both decline and recovery of function. We then turn to the practical issue of measurement of memory deficits after stroke, emerging biomarkers, and therapeutic approaches. Our review identifies critical gaps, particularly in studies of the natural history that properly map the long-term trajectory of memory and the associations with factors that modulate prognosis. Few studies have used advanced neuroimaging and this, in conjunction with other biomarker approaches, has the potential to provide a much richer understanding of the mechanisms at play and promising therapeutic avenues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/STROKEAHA.122.041497 | DOI Listing |
PLoS Biol
January 2025
Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
Successful resolution of approach-avoidance conflict (AAC) is fundamentally important for survival, and its dysregulation is a hallmark of many neuropsychiatric disorders, and yet the underlying neural circuit mechanisms are not well elucidated. Converging human and animal research has implicated the anterior/ventral hippocampus (vHPC) as a key node in arbitrating AAC in a region-specific manner. In this study, we sought to target the vHPC CA1 projection pathway to the nucleus accumbens (NAc) to delineate its contribution to AAC decision-making, particularly in the arbitration of learned reward and punishment signals, as well as innate signals.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA.
Converging lines of research indicate that inhibitory control is likely to be compromised in contexts that place competing demands on emotional, motivational, and cognitive systems, potentially leading to damaging impulsive behavior. The objective of this study was to identify the neural impact of three challenging contexts that typically compromise self-regulation and weaken impulse control. Participants included 66 healthy adults (M/SD = 29.
View Article and Find Full Text PDFAust Occup Ther J
February 2025
School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
Introduction: Mild cognitive impairment (MCI) and Alzheimer's disease (AD) lead to decline in performance in activities of daily living (ADLs). Multiple questionnaires assess this construct among older adults. The objective of this study was to review existing literature studying psychometric properties of questionnaires assessing performance in ADLs of older adults living with MCI and AD specifically.
View Article and Find Full Text PDFAnimal Model Exp Med
January 2025
Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
Background: Subcortical ischemic vascular dementia (SIVD) is a common subtype of vascular dementia. Currently, the bilateral common carotid artery stenosis (BCAS) mouse model is the most suitable SIVD rodent model. In this study, we investigated the functional and structural impairments in the hippocampus 1 month after BCAS.
View Article and Find Full Text PDFNeurogenetics
January 2025
Department of Surgery, Surgical Research Section, Hamad Medical Corporation, Doha, Qatar.
Memory is a dynamic process of encoding, storing, and retrieving information. It includes sensory, short-term, and long-term memory, each with unique characteristics. Nitric oxide (NO) is a biological messenger synthesized on demand by neuronal nitric oxide synthase (nNOS) through a biochemical process initiated by glutamate binding to NMDA receptors, causing membrane depolarization and calcium influx.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!