A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of Gelatin/Polylysine- and Silk Fibroin/SDF-1α-Coated Mesenchymal Stem Cell-Seeded Intracranial Stents. | LitMetric

Comparison of Gelatin/Polylysine- and Silk Fibroin/SDF-1α-Coated Mesenchymal Stem Cell-Seeded Intracranial Stents.

Macromol Biosci

Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.

Published: April 2023

AI Article Synopsis

  • Endothelialization of the aneurysmal neck is crucial for aneurysm healing post-endovascular treatment, and mesenchymal stem cell (MSC)-seeded stents can facilitate this repair process.
  • The study investigates two types of coatings on nitinol stents: gelatin/polylysine (G/PLL), which aids cell adhesion, and silk fibroin/SDF-1α (SF/SDF-1α), which enhances cell movement.
  • Results show that G/PLL-coated stents support better cell proliferation and lower inflammation, potentially improving healing and treatment outcomes for intracranial aneurysms compared to SF/SDF-1α-coated stents.

Article Abstract

Endothelialization of the aneurysmal neck is essential for aneurysm healing after endovascular treatment. Mesenchymal stem cell (MSC)-seeded stents can promote aneurysm repair. The biological effects of coated and uncoated nitinol intracranial stents seeded with MSCs on vascular cells and macrophage proliferation and inflammation are investigated. Two stent coatings that exert pro-aggregation effects on MSCs via different mechanisms are examined: gelatin/polylysine (G/PLL), which enhances cell adhesion, and silk fibroin/SDF-1α (SF/SDF-1α), which enhances chemotaxis. The aim is to explore the feasibility of MSC-seeded coated stents in the treatment of intracranial aneurysms. The G/PLL coating provides the highest cytocompatibility and blood compatibility substrate for MSCs and vascular cells and promotes cell adhesion and proliferation. Moreover, it enhances MSC secretion and regulation of vascular cell and macrophage proliferation and chemotaxis. Although the SF/SDF-1α coating promotes MSC secretion and vascular cell chemotaxis, it induces a greater degree of macrophage proliferation, chemotaxis, and secretion of pro-inflammatory factors. MSC-seeded stents coated with G/PLL may benefit stent surface endothelialization and reduce the inflammatory response after endovascular treatment of intracranial aneurysm. These effects may improve aneurysm healing and increase the cure rate.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.202200402DOI Listing

Publication Analysis

Top Keywords

macrophage proliferation
12
mesenchymal stem
8
intracranial stents
8
aneurysm healing
8
endovascular treatment
8
msc-seeded stents
8
mscs vascular
8
vascular cells
8
cell adhesion
8
treatment intracranial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!