Bacteriophage burst size is the average number of phage virions released from infected bacterial cells, and its magnitude depends on the duration of an intracellular progeny accumulation phase. Burst size is often measured at the population level, not the single-cell level, and consequently, statistical moments are not commonly available. In this study, we estimated the bacteriophage lambda (λ) single-cell burst size mean and variance following different intracellular accumulation period durations by employing Escherichia coli lysogens bearing lysis-deficient λ prophages. Single lysogens can be isolated and chemically lysed at desired times following prophage induction to quantify progeny intracellular accumulation within individual cells. Our data showed that λ phage burst size initially increased exponentially with increased lysis time (i.e., period between induction and chemical lysis) and then saturated at longer lysis times. We also demonstrated that cell-to-cell variation, or "noise," in lysis timing did not contribute significantly to burst size noise. The burst size noise remained constant with increasing mean burst size. The most likely explanation for the experimentally observed constant burst size noise was that cell-to-cell differences in burst size originated from intercellular heterogeneity in cellular capacities to produce phages. The mean burst size measured at different lysis times was positively correlated to cell volume, which may determine the cellular phage production capacity. However, experiments controlling for cell size indicated that there are other factors in addition to cell size that determine this cellular capacity. Phages produce offspring by hijacking a cell's replicative machinery. Previously, it was noted that the variation in the number of phages produced by single infected cells far exceeded cell size variation. It was hypothesized that this variation is a consequence of variation in the timing of host cell lysis. Here, we show that cell-to-cell variation in lysis timing does not significantly contribute to the burst size variation. We suggest that the constant burst size variation across different host lysis times results from cell-to-cell differences in capacity to produce phages. We found that the mean burst size measured at different lysis times was positively correlated to cell volume, which may determine the cellular phage production capacity. However, experiments controlling for cell size indicated that there are other factors in addition to cell size that determine this cellular capacity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927085 | PMC |
http://dx.doi.org/10.1128/spectrum.02663-21 | DOI Listing |
Int J Mol Sci
December 2024
Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
A phage-antibiotic synergy could be an alternative in urinary tract infection (UTI) therapy, as it leads to the elimination of bacteria and to the reduction in variants resistant to phages and antibiotics. The aims of the in vitro study were to determine whether phages vB_Efa29212_2e and vB_Efa29212_3e interact synergistically with selected antibiotics in the treatment of infections, to optimize antibiotic concentrations and phage titers for the most effective combinations, and to assess their impact on the number of spontaneous resistant variants and on the phages' reproductive cycles. The modified double-layer disc diffusion method, checkboard, time-kill assays, one-step growth method and the double agar overlay plaque assay were implemented.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA.
Ocean warming due to climate change endangers coral reefs, and regional nitrogen overloading exacerbates the vulnerability of reef-building corals as the dual stress disrupts coral-Symbiodiniaceae mutualism. Different forms of nitrogen may create different interactive effects with thermal stress, but the underlying mechanisms remain elusive. To address the gap, we measured and compared the physiological and transcriptional responses of the Symbiodiniaceae to heat stress (31°C) when supplied with different types of nitrogen (nitrate, ammonium, or urea).
View Article and Find Full Text PDFViruses
November 2024
Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China.
is a major global threat to human health, and phage therapy has emerged as a promising strategy for treating infections caused by multidrug-resistant pathogens. In this study, we isolated and characterized a lytic phage, PaTJ, from wastewater. PaTJ belongs to the phage family , and is featured by short latency (30 min) and large burst size (10 PFU per infected cell).
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China.
Abortusequi ( Abortusequi) is the primary cause of abortions in equine animals, and can cause serious foodborne illness. Thus, effective biocontrol strategies are needed to decontaminate and control the emergence of foodborne diseases. In recent years, phages have been used as a new strategy for modulating foodborne pathogens and food safety.
View Article and Find Full Text PDFArch Virol
January 2025
Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China.
In this study, a lytic phage, named PG216, was obtained from seawater collected in Qingdao, using Vibrio parahaemolyticus strain G299 as its host. Transmission electron microscopy revealed that phage PG216 has an icosahedral head with a diameter of 100 ± 6.7 nm and a contractible tail with a length of 126 ± 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!